®
3
)
o2
By
(]
C
=

HANDS-ON P
PROJECTS 4 ("

FOR MAKERS

C64x withr Commodore 0S 2 g’

FPGA-based Spectrum Next sﬁﬁ

mart N1
Automate your house)/ G":z'
Check plants and pets (/
s 3T

(@ ~772Y

Learn Node-RED,
then add Python

LINUX NEW MEDIA
The Pulse of Open Source

MAKERSPACE-MAGAZINE.COM

Turn your ideas
Into reality!

' This is not your ordinary
computer magazine!
MakerSpace focuses on
technology you can use to
build your own stuff.

If you're interested in

. Py up . electronics but haven’t

¢ 1'3"7 Eegxsv':m‘;lnlﬂlﬂfzsvou'uuwm A .‘ had the time or the skills
°% b (yet), studying these maker
projects might be the final
kick to get you started.

Solar-Powered loT
Avoid the battery dance with
a sun-powered Pi Pico

Irrigation Innovation o /4
Water your plants without

Mix a little Bash in
your Python scripts

COLLECT ALL 3

ORDER ONLINE: shop.linuxnewmedia.com

CoscoensesneRaNOORNOERNOSOIAOROORNOIONOOINROIOORNONOONOONOOIOONRNOOOSONOOONONOOOROOOORONROONOOODYS

Imagine It,

Make It

By Hans-Georg EBer

Welcome MAKERSPACE

elcome to MakerSpace 4,

an all new collection of ex-

citing, hands-on projects! If

you’re new to MakerSpace,
we are a computer magazine that covers
more than just the latest PCs or Apple
computers — or Android or iOS smart-
phones and tablets for that matter. In
this magazine, we talk about technology
that you can use to build your own stuff
and bring your ideas to life. If you don’t
have the time or the necessary skills, we
hope looking at the projects in this mag-
azine will inspire you to start a program-
ming class, learn soldering, or work on
some other skill.

Computing Can Be Fun

We use computers in the office; we use
them at home. Every smartphone is a
powerful computer. If you bought a TV
in the last 10 years, it also will likely run
apps. Computers are tools, and they pro-
vide entertainment, but in most cases
only as a medium. A few decades ago,
that was a different story. If you had a
computer in the 1980s, you might re-
member how these machines used to
fascinate us. Computers let us watch in
awe when they “learned” a new feature:
“Oh wow, it has stereo sound; you hear
that?” “Oh, look how smooth that ani-
mation runs on the screen.”

Today we expect that machines can do
anything we can imagine. If there’s some-
thing they can’t do today, then it’s just a
question of time (for advancing the tech-
nology) and creativity (someone has to
implement it) before it becomes a reality.
Living in the 2020s, it’s hard for us to

MAKERSPACE-MAGAZINE.COM

become fascinated with technology be-
cause we’re surrounded by it, and we’re
accustomed to using it all the time. Part of
the problem is that modern devices are
very complex. They are preconfigured at
the factory, and we don’t have to under-
stand how to assemble them. We don’t
need to care about what kind of proces-
sors and other chips make them work.

Yet even today, it is possible to under-
stand, to assemble, and to build. Thanks
to small, cheap devices such as the
Raspberry Pi and a huge family of micro-
controllers, we can create systems that
were impossible 15 years ago.

Projects
We’ve collected quite a few project ideas
that we found interesting, and we hope
you do as well. On page 8, we show you
how to build a retro alarm clock for your
bedroom with four shiny seven-segment
LEDs, controlled by an STM32
microcontroller, to display the time like
it’s the 1980s again.

The next article uses the Raspberry Pi
Pico (a different microcontroller) as the
heart of a mobile

On pages 18 and 23, you’ll find two
camera-based projects. In the first arti-
cle, we show you how to build a cam-
era that uses four image sensors to cre-
ate so-called lenticular images: By si-
multaneously shooting the same pic-
ture from several positions, you can
later create 3D or motion effects. This
article shows what you need to assem-
ble the camera with a Raspberry Pi,
and it also discusses several applica-
tions that let you transform the photos.
The second article needs only one
camera and lets you set up a VPN and
livestream so that you can watch your
pets while you’re away (Figure 1).

If you need an image viewer that lets
you use gestures to scroll, take a look at
the “Hands Free” article (p. 26). As a
good use case, imagine you’re following
a long recipe and you’ve dirtied your
hands with the ingredients. With normal
tech, you would have to first wash and
dry your hands before scrolling the tab-
let screen to get to the next recipe step.
With this project, that won’t be
necessary.

e-ink information
display (p. 14).
Using a few Python
commands, you
can make it show
the information
that is relevant to
you: weather fore-
casts, local temper-
atures, or free disk

space on your per-
sonal server.

Figure 1: Add a camera module to your Raspberry Pi
and check your pets’ activities while you're gone.

MAKERSPACE 3

0000000000000 00000000000000000000000000c00d0RRGLIRNOLOOIRNDIAOENOIOIOIBROIOORSDS

Make

Welcome

,

The next article (p. 29) lets you pilot
an in-house drone. The DJI Ryze Tello
is an educational tool that lets you pro-
gram a steering application in Scratch or
Python. Besides flying around and trans-
mitting video, you can query its sensors
to discover the height, temperature, and
barometric pressure.

We close the section with an introduc-
tion to artificial intelligence (AI) on the
Raspberry Pi (p. 32): Learn how to get a
pre-trained object classification model
and deploy it in TensorFlow Lite or
OpenCV. You will need a Pi 4 (or better)
for this since the older Pis aren’t suffi-
ciently powerful.

Automation

In the Automation section, we show
you even more projects — but they’re
all about home automation! With
ESPHome (p. 36), you can create your
own home automation devices with a
supported microcontroller board that
you connect to LEDs, sensors, or
switches. Use a Raspberry Pi Pico to
control ventilation, heat, and windows
in your greenhouse (p. 42, Figure 2),
and add a RaspBee Il module (p. 46) to
your Raspberry Pi and have it talk to
Zigbee devices all over your house. Fi-
nally, on page 50 we show you how to
integrate the MQTT protocol into
Home Assistant.

{‘ v" 2 ; “ ";‘"{ § — :
Figure 3: Automate your greenhouse with a Raspberry Pi Pico W.

%

Retro Computing

If you’ve read earlier issues of Maker-
Space, you know that we have a soft spot
for retro computing projects and prod-
ucts: We celebrate revivals of the home
computer technology of the 1980s. In
this issue, we review the second edition
of the FPGA-based Sinclair ZX Spectrum
Next (p. 54, Figure 3), and we look at
a beautiful Commodore C64-shaped
computer case for Mini-ITX main-
boards (p. 58) - both are successful

Kickstarter projects with backers receiv-
ing their hardware a few months ago. On
page 62, we introduce you to the BCPL
programming language, C’s ancient pre-
decessor that was created in 1967.

Programming
The last section offers even more pro-
gramming, but with current technology.
Control an LED display with Go (p. 68);
start learning to use Node-RED, a “low-
code” programming platform (p. 74);
and add Python scripts to your Node-
RED projects so that you can use all of
the Raspberry Pi’s features (p. 81).
Another low-code tool, Snap4Arduino
(p. 86), is an implementation of Scratch
and provides a unique set of libraries
that will upload and configure Arduino
modules without requiring any Arduino
knowledge. An alternative approach to
programming these microcontrollers is
Arduino CLI. If you prefer the command
line over graphical development tools,
this might be just the right tool for you.

Let’s Get Excited

I hope you’ll find the topics we’ve se-
lected exciting. Perhaps you’ll modify
our suggestions and evolve them into
something even better. If you do, we’d
love to hear your “success stories.” Take
a few pictures, and tell us how you’ve
modified our ideas. You can reach us at
edit@makerspace-magazine.comn. HEE

o

2

Figure 3: The Sinclair ZX Spectrum Next is back, again: We look at the
second edition of the FPGA-based home computer.

Maker-pace-Online

New Maker Content Every Week

At MakerSpace, we are all about technology you can use to build your

own stuff. Our goal is to help you turn your ideas into reality with
hands-on projects for makers.

Solar-Powered Pi Pico

q Samstag o s *

14:36

423.0°C_ 3.6V 51%

Fresh Content, Delivered
Subscribe now and join the
MakerSpace community. You'll
stay up-to-date when new
content is published.

https://makerspace-online.com

0000000000000 0000000000000000c0000000000s00d000000dsRRSBNBBMBLRDYS

MAKERSPACE

Contents

Makerospace @

0000000000000 0000000000000000000C00FCONOIVINONOIOGEOIODOOTIONINOOIBOOOROBOOBC

PROJECTS

8 DIY Alarm Clock
A few electronic components, some code,
and a handmade wooden case make a fine
retro-style bedside clock.

Smart Home Info Center

You don’t need much to create a smart home
information center - just a Raspberry Pi
Pico, an ePaper panel, a battery, and some
Python.

14
29

DIY Lenticular Camera
You can take lenticular images with a
homemade camera to recreate
the “wiggle” pictures of your
childhood.

18
32

Raspberry Pi Pet Camera
A Raspberry Pi, a Pi-
compatible camera, and a
mesh VPN are all you need &%
to watch your pets from afar. 3%

A

(A AR R RN E R AN REEEE NSRS ERENENERENEERNE-SERZ-SEH:.EHE-:RZ:NSENEJNRNEESRJS RN

Gesture-Controlled Book

Use gestures instead of getting your device
dirty. Have you found yourself following
instructions on a device for repairing
equipment or been halfway through a recipe,
up to your elbows in grime or ingredients and
then needed to turn or scroll down a page?

DJI Ryze Tello

Drones are more fun if you can program the
unmanned aerial vehicle yourself. The DJI
Ryze Tello and Python make this possible.

TensorFlow Al on the Pi

You don’t need a powerful computer
system to use Al. We show what it
takes to benefit from Al on the
Raspberry Pi and what tasks the
small computer can handle.

Tx

vy)

AUTOMATION

36 ESPHome
With an ESP32 or Raspberry Pi Pico W
microcontroller board, you can easily create
your own home automation devices. Thanks
to ESPHome, you don’t even have to be a
programmer.

46

50

Greenhouse Control
You can safely assign some greenhouse tasks
to a Raspberry Pi Pico W, such as controlling
ventilation, automating a heater, and opening
and closing windows.

42

Smart Home with Zigbee
The RaspBee II module
turns your Raspberry

Pi into a smart control
center for Zigbee devices.

Home Assistant with
MQTT

Automating your four walls does not
necessarily require commercial solutions.
With a little skill, you can develop your own
projects on a low budget.

A AR EREEEEEEEEEEEEEEENEEREEEEREERE SRR AR R RN R R R E NN E NN RN SN RN NRENNRENSN N

Contents MAKERSPACE

0000000000000 0O0CBOCOOOONOOOONSGSOOIPNOIONONOSIOONDOOORDROIOONOREGEONONSGSODOBRONDSBSTAOADOIOODYD

RETRO COMPUTING

54 ZX Spectrum Next
After the ZX Spectrum Next development team
at SpecNext ended their second successful
Kickstarter campaign in 2020, backers had to
wait until Christmas 2023 to put a new 8-bit
computer under the tree. Was it worth the wait?

5 8 Commodore 0S Vision 2
Commodore is back: First a computer case
via Kickstarter brings back the “bread box”
form factor but lets you put a Mini-ITX
PC mainboard inside, and now there’s a
new Linux distribution that fits that setup
perfectly.

BCPL

The venerable

BCPL procedural
structured
programming
language is fast

to compile, is
reliable and efficient,
offers a wide range
of software libraries and

system functions, and is available on several
platforms, including the Raspberry Pi.

000000000000 0000000000000000000000C0OCROIOROPROROPORPOPROOORROGOIOOIGORBRBTOONC

PROGRAMMING

68 Customizing an LED Display
The Ulanzi TCOOL is a low-budget LED
display that lets you customize the firmware
and add some homemade scripts.

74 Node-RED
Node-RED lets you connect ready-made
code building blocks to create event-driven
applications with little or no code writing.

81 Python and Node-RED
Adding Python to your Node-RED arsenal lets
you create easy Raspberry Pi robotic and IoT
projects.

86 Low-Code with Snap4Arduino
Snap4Arduino brings the power of low-code
programming to the Arduino hardware
environment.

9 a Arduino CLI

When programming an Arduino
microcontroller board for the first time,
most people use the Arduino

IDE. However, if you
prefer the command
line, you have
a powerful
alternative:
Arduino

CLI.

o000 OOOODOODORPOOOONOOOIOGOIOGOENONCE

SERVICE

3 Welcome
98 Masthead

MAKERSPACE 7

PROJECTS DIY Alarm Clock

0000000000000 0000000000000000c0000000000coodso0tOORBOSORNOSIOONOOIOIROIOOLALBIBADS

Making a retro-style alarm clock

Clocking On

A few electronic components, some code, and a handmade
wooden case make a fine retro-style bedside clock.

By Andrew Malcolm

hen my venerable bedside
clock radio and alarm - a
present from my parents in
the 1980s - finally died, as
a maker, my first thought was not,
“Where can I buy another?” but “Can I
make one?”! I didn’t really use the radio
(I think it was AM only, and here in the
UK, AM is no longer used much), so my
ideas began to form around a simple,
retro-style digital clock with an LED
display in an attractive wooden case.
The case needed to be simple to
build because my woodworking skills
are limited. I chose a large green LED
display for its restful color in the dark,
and I wanted the clock to run off a USB
wall socket to simplify the power sup-
ply design whilst retaining the possi-
bility of running from a small external
USB battery pack. I felt some user in-
terface would be required to set the

Table 1: Bedside Clock

A microcontroller (32-bit ARM CPU, 48MHz internal clock)
32KHz watch crystal for the real-time clock

8MHz crystal for microcontroller

Backup battery for the real-time clock

Four seven-segment displays, one inch high, for hours and minutes
Two discrete LEDs for the colon between hours and minutes
Piezoelectric buzzer for alarm

Four push-buttons to set time and brightness, one to cancel the alarm
Connectors for power, programming, debugging

8 MAKERSPACE

time, set and cancel an alarm, and con-
trol the display brightness. Five push-
buttons are sufficient for this task. The
alarm, of course, requires a buzzer or
speaker. Table 1 lists the essential
hardware elements.

Hardware Design

The core of the system is an STM32 mi-
crocontroller, specifically the STM32F-
072CBT6 [1]. It drives the display, inter-
rogates the switches, and drives the
buzzer for the alarm. You will find a
huge variety of microcontrollers on the
market, so the choice of an appropriate
device can be daunting. Previous expe-
rience tells me that ST Microelectronics
devices perform well at a good price
point and are very well supported in
terms of development tools and online
resources. Having designed a great
many projects around these devices, I
also know that software development
will be accelerated by my familiarity
with the STM32 family and their devel-
opment tools.

This project could just as easily have
been based on an Arduino, a PIC, or a Pi
Pico; however, as I say, choice comes
down to familiarity and suitable package
configurations with the required 1/0.
The key feature required for a clock is
clearly a battery-backed real-time clock
built into the microcontroller, and with
ST Microelectronics’ excellent device

MAKERSPACE-MAGAZINE.COM

Lead Image © almoond, 123RF.com

A AR EREEEEEEEEEEEEENEENEEEE N R EERE SRR AR R RN R RN R R AN E NN REE SN RN YN NNRENS NN

DIY Alarm Clock PROJECTS

selection tools, I was able to select a
suitable device with this feature, as well
as sufficient pins to drive the display,
switches, buzzer, and debug port.

As you will see, onboard timers are
key to this project and all STM32 devices
come with several configurable timer
units. The device needs an external
crystal as a frequency source for the
real-time clock, but in all other regards,
is entirely self-contained. The frequency
accuracy and temperature coefficient of
this crystal will determine the overall
accuracy of the clock, so it is important
to choose this device carefully.

The project was designed to run from a
standard USB socket, and the 5V pro-

groups of two, and two color-matched
discrete LEDs to form the flashing colon
between hours and minutes. The seven-
segment displays are multiplexed to-
gether (see the “Multiplexing” box)
and driven by a seven-channel open
collector driver chip and discrete
transistors.

I chose four switches to mount to the
left of the display and was able to find

PCB-mounted switches with a button stem

tall enough to protrude through the front
panel past the displays. The fifth button is
a large circular push-button in the top of
the unit, used to cancel the alarm.
Schematic capture and PCB layout
were both performed in KiCad, a free

of all the components and view the PCB
assembly in a 3D viewer has saved me
from mechanical clashes not apparent
from the 2D design perspective.

Multiplexing

Multiplexing is used to limit the num-
ber of pins and drivers required to in-
terface them to the microcontroller.
The seven-channel open collector
driver is connected to the cathodes of
each display segment by current-limit-
ing resistors, and each separate display
unit has its own transistor to connect
the common anodes to the 5V power
supply at the correct time. The LEDs
that form the colon separator are con-

trolled by a single transistor, and they
are separate from the multiplexing
scheme. The decimal point in the right-
most seven-segment display is illumi-
nated when an alarm is active, so a
driver is provided for that, too. The
buzzer is also driven by a transistor,
with the microcontroller providing a
1KHz square wave pulsed at one-sec-
ond intervals to indicate an alarm.

vided powers the displays directly, whilst
a small linear regulator provides the 3.3V
supply to the microcontroller. A standard
3V button cell provides the battery
backup voltage, which prevents having to
reset the time if the unit is unplugged or
power is lost in some other manner.

The display consists of four one-inch-
high, green, seven-segment LEDs [2] for
hours and minutes, arranged into two

and open source CAD tool originally de-
veloped at CERN [3]. It really is an excel-
lent suite of tools and handles the whole
process of electronic design from sche-
matic capture right through to generat-
ing files for manufacture. A 3D viewer
generates an image of your design, in-
cluding the components, that you can
pan and rotate. Although PCB layout is a
2D activity, the ability to add 3D models

1 2 = I 5 I 5 I [
ST—Link V2 programmer
1

I
3 G_SWCLEK 5y
- G_SWDI0
k)| Pl BATEOJFILM) D2
Ll

C11 12
é jLoon 1000
A GND. 2
USB-QTG u1 . G
4 AZ1117CR-3.3TRGL +33Y

11 Pz BATELIAILM

P2
3 ol
) +[C10

aon 10y

USB_OTG_FS_D+

Lianp

GND

USB_OTG_FS_D—

USB_0T6_F5 b
PALY 2; < DBG_SWCIK |

1!

LEDL p D3 27
Ry DRY_DP

330R, R6 LEDZ o D&
Ny

dat s cathade

| GND
Backup battery
3002 cell positive (€13

e Taon
VBAT: BAT BATBRJFILM
s 05 hpar2
BTi 1K
c| '|' CR2032 N
RE

2991 cell negative

+5v

RZB

+c20 470R
aon]

7:'- T 1

R2L4

GHD
MMBT2007A ik
u

u3 ULN20034

4708
) frou Tnv 4 N ak
MMBT2907A MMBTDQU L
: R19

SEG A
SEG B
sEaC |
SEG D

SEGE |
SEGF]
SEGG]

ca

<
GND [100n

GND

Serial debug

1

SAL0-21GWA SALO-21G¥A SAL0-216WA

<

GND
Alarm mute
3

DL
Sheet; 7
Files LEDClock.ticad_sch i

1
{MUTE]
=t Tle: LEDClock
Size: AG [Date: | Rev:

J7 Hi 12 HI Hi HE HE
GND 0 0 0 0 0 0 KiCad E.D.A. kicad 6.0.11-2627ca5db0-126-ubuntu22.04.1 [1e: 11

1 I 2 I 3 I L] I 5 I 6

Figure 1: Schematic of PCB board.

0000000000000 0000000000000000c0000000000c0Rbo0ROOIRNBLISOIRNOIOONOOIOIROLOOABBADS

PROJECTS DIY Alarm Clock

Exporting the 3D model as a STEP file and importing that
into 3D CAD tools such as FreeCAD [4] builds more complex
assemblies, aiding the design of parts (e.g., enclosures) suit-
able for 3D printing. Many excellent PCB companies online
will build good-quality PCBs in a few days for less than $5
(EURS, £5), so building prototype or experimental PCBs is
not prohibitively expensive.

Once the PCB design was complete in KiCad, a 3D model of
the PCB assembly was exported into FreeCAD, and an assem-
bly of the case and front panel was created to ensure all the as-
sumptions about dimensions were correct. The full schematic
for the final design is shown in Figure 1.

The 3D model (Figure 2) ensured mechanical dimensions
matched and provided drawings for the manufacture of the
Figure 2: Three-dimensional model of bedside clock. front panel and dimensions for the wooden case. The PCB as-

sembly can be seen behind the transpar-
Listing 1: Number Lookup Table ent front panel and the alignment of
push-buttons with the holes in the front
panel is visible, too.

01 // digit (0 to 9) to seven-segment pattern
02 // 1 in binary constant means segment on

03 // O means segment off

Firmware

o4 static uints_t patterns[16] =
stete v pettemms el The real-time clock feature of the STM32

.) family of microcontrollers is central to

o8 //ABCDEFG (segnent id) the firmware design. Much like the real-

o7 obli1illo, // 0 time clock found in every PC, it provides

08 IEREET, Jf 2 a convenient record of the current time

&S 0b1101101, // 2 in hours, minutes, and seconds (al-

10 0b1111001, // 3 though seconds are not used in this de-

11 000110011, // 4 sign) and runs even when the unit is

12 0b1011011, // 5 powered down, as long as backup power

13 0b1011111, // 6 is provided from a button cell. The time

14 0b1110000, // 7 is set with two of the buttons on the

15 0b1111111, // 8 front panel. When the upper button is

16 0b1111011, // 9 pressed, the time increments by a min-

i 000000000, // blank ute. If the button is held down, the time

o 060000000, // blank advances at one minute every half sec-

- sEcnH00dD, /. Blat ond. The lower button operates in a sim-

" e A ilar manne.r, but fiecrements the time.'

o dbdab0, 1 bler The élarm is set in the same way, whilst
holding down the button on the top of

22 0b0000000, // blank the unit to cancel the alarm.

23 };

= Seven-Segment Displays

Esl/ S uriteltotsalected digit it/ Seven-segment displays are generally

26 static void write digit(int digit) used only to display numeric characters,

27 { although a small subset of the alphabet

28 // extract the required pattern by using is also possible. In this case, only num-

29 // the number as an index into the lookup table bers are required. The means to turn the

30 uints_t pattern = patterns[digit & 0x0f]; numbers 0 to 9 into the correct pattern

31 for the seven segments is easily achieved

32 HAL_GPIO_WritePin(SEG_G_GPIO_Port, SEG_G_Pin, (pattern >> 0 & 1)); with a lookup table (Listing 1).

33 HAL_GPIO_WritePin(SEG_F_GPIO_Port, SEG_F_Pin, (pattern >> 1 & 1)); .

34 HAL_GPIO_WritePin(SEG_E_GPIO_Port, SEG_E_Pin, (pattern >> 2 & 1)); Timers

35 HAL_GPIO_WritePin(SEG_D_GPIO_Port, SEG_D_Pin, (pattern >> 3 & 1)); The' clock firmware Felies heavily on tim-

36 HAL_GPIO_WritePin(SEG_C_GPIO_Port, SEG_C_Pin, (pattern >> 4 & 1)); e.rs intemal o, fhe misrosaniraller These

37 HAL_GPIO_WritePin(SEG_B_GPIO_Port, SEG_B_Pin, (pattern >> 5 & 1)); tl.rners. Pl O eG A

38 HAL_GPIO_WritePin(SEG_A_GPIO_Port, SEG_A_Pin, (pattern >> 6 & 1)); RES R il EEIINIRIS

interrupt when a specified target is
reached. In most cases the timers are

10

SoesesoendERNOOOOROOINOIOENOOIORNROIOONONOSEONOOONONINOSONRNOOSONOOONONOOORNOOOORONRONOOODYS

Multiple Displays on a Single Bus

Driving four seven-segment displays directly from the microcontroller would require
at least 36 pins and 32 driver channels (if you include the decimal point) and would re-
quire a much larger microcontroller, four eight-channel driver chips, and a consider-
ably more complex PCB layout. The driver chips are required because the microcon-
troller cannot sink sufficient current to light the LEDs). The usual solution is multiplex-
ing, that is, to connect the cathodes in all the matching segments in each display to-
gether and to a low-side driver and the common anodes to high-level switches.

Each display is turned on in turn by these high-level switches whilst the correct seven-
segment pattern is applied to the low-side driver. Therefore, each display is on for a
maximum of one-quarter of the time, but by setting the LED current to an appropriate
level, it’s quite possible to provide a display that is clearly visible in daylight. This setup
requires 12 1/O pins, four high-side transistors, and a single low-side driver chip. An ex-
cellent description of display multiplexing is described on Wikipedia [7].

programmed to reload the same target,
resulting in periodic interrupts.

The first timer has a one-second pe-
riod used to toggle the display colon on
or off, giving the clock a live feel, be-

(to the nearest second) from the real-
time clock and saves it in a variable ac-
cessible by the display multiplexer. The
display multiplexer (see the “Multiple
Displays on a Single Bus” box for de-

cause the time only changes once a min- tails) itself uses a timer, which is set in

ute. The timer also reads the latest time

Listing 2: Debouncing Switches
01 static bool timer_running = false;
02 static bool last_switchl_state = 1;
03

o4 // interrupt callback called when a switch is pushed

05 void interrupt_callback(void)
06 {

07 if(!timer_running)

08 {

09 last_switchl_state = read_ pin();
10 1

11

12 // start a timer to wait for 20ms
13 // then resample in timer ISR. only
14 // act if the two samples match

15 timer_running = true;

17 register_timer_callback(timer_callback);

18 start_timer();

22 // debounce switch: if state is still same
23 // as initial after 20ms confirm action
24 void timer_callback(void)

25 {

26 stop_timer();

27 bool switchl state = read_pin();

29 if(switchl_state == last_switchl_state)

30 {

31 // switch push verified, do required action
35

33 }

pulse width modulation (PWM) mode,

generating a peri-
odic interrupt at
the multiplexing
rate (20ms), used
to move to the
next digit and up-
date its data.

A second inter-
rupt is generated
at the end of the
PWM period (less
than or equal to
the 20ms multi-
plexing rate) and
switches off the
current digit. In

DIY Alarm Clock PROJECTS

this way, if the PWM period is less than
the multiplexing period, each display
will be off for more than a quarter of the
total time, causing the display to be dim-
mer. In this way, the PWM is used to
control display brightness.

The clock has five push-buttons used
to set the time, set or cancel an alarm,
and control the display brightness. Four
of these buttons are on the front panel
adjacent to the display. They are con-
nected to microcontroller I/O pins con-
figured to generate interrupts when the
push-button is pressed or released. Un-
fortunately, most push-buttons (and
switches in general) do not change state
cleanly but “bounce” between open and
closed for several milliseconds before
settling to the new state. This bounce
can cause all sorts of weird effects if not
dealt with, and push-button debouncing
is a common problem often fixed in firm-
ware with debouncing techniques. In
this case, a timer is used for this function
(see the “Debouncing Push-Buttons with
Timers” box for details).

The push-buttons used to control the
clock have varying functions depending
on context: You need to differentiate
between a brief push and a sustained
press, the latter used to advance the
clock rapidly when setting the time
and alarm. Again, a timer is used - in
this case, in one-shot mode. The timer
is set when a button push is detected,
and if, when the timer’s interrupt fires,
the push-button is still pressed, the
“sustained hold” function is initiated.

Debouncing Push-Buttons with Timers

Push-buttons and switches rarely exhibit ideal behaviour:
You would like them to go from open to closed in an instant.
In reality, most exhibit what is known as switch bounce [8].
De-bouncing switches can be achieved in many ways, some
of which require extra hardware (resistor-capacitor (RC) net-
works, set-reset latches, etc.). However, in a microcontroller
environment timers are often seen as a simple solution when
a delay of a few tens of milliseconds is acceptable.

The operation goes like this: The microcontroller is set up to
produce an interrupt once the button is pushed. At this point
the state of the switch is recorded, and a 20ms timer is started.
When the timer expires, the state is recorded again. If the two
states are equal, a switch event is deemed to have occurred. If
the switch “flapped” between states in the intervening 20ms,
those transitions must be ignored. Thus, it is important not to
resample the switch state while the 20ms timer is running, so
the interrupt routine that does the initial sampling must either
be disabled in that period or contain some logic that has a sim-

ilar effect (Listing 2).

1

Finally, a timer is used to generate a
1KHz square wave to drive the buzzer.
The timer interrupts every half-cycle
(500ps), and the buzzer I/O pin state
is toggled. The number of toggles is
counted, and the toggling is controlled
in such a way as to produce bursts of
1KHz sound at regular intervals - not
quite enough to raise the dead, but a
gentle reminder that it’s time to get
up! One of the five push-buttons is a
large circular type on the top of the
clock case; pressing that button can-
cels the alarm.

Listing 3: Overriding Defaults

01 // the default implementation (in syscalls.c)

02 __attribute_ ((weak)) int _write(int file, char *ptr, int len)

03 {
ou
05 }

[o]3]

07 // the replacement to redirect output to a UART serial device.

08 int _write(int file, char *ptr, int len)
09 {

10

11 HAL UART_Transmit(&huart3, ptr, 1, -1);
12

137

Software Development

I know the use of integrated develop-
ment environments (IDEs) can be con-
troversial and very much a matter of
taste, and it’s certainly possible to do
this type of microcontroller development
without one. The ARM compilers and
standard libraries can be downloaded
from your distro’s repository, and you’re
off, with the use of any editor that suits
you and make or cmake, again, at your
choice. Once you have a compiled bi-
nary, ST-Link utilities allow you to pro-
gram your device, and you can use the
gbd utility to
debug your pro-
gram. If you
don’t want to
use the hard-
ware abstraction
layer (HAL) li-
braries provided
by ST, you can
generate your
own header files
with the ad-
dresses of the
microcontroller
registers and all
the bit patterns
required for
configuration.

< main_tasks [LEOClockioe X

Pinout & Configuration

Clack Configuration
~ Software P

- - GOl o~ - - %

Project Manager

Pinout view

SIM32F072C8T%
LOFP48

Figure 3: The pin configuration for this design and an example of a

timer setup.

12 MAKER

0000000000000 00000000000000000000000000c0ods00toORBOSRRNOSIOIAOMOOIOIROIOOLALBIBADS

PROJECTS DIY Alarm Clock

That said, ST’s STM32CubelDE [5]
(Figure 3), which is based on Eclipse,
does streamline the process by integrat-
ing ST’s CubeMX tool, a utility that lets
you configure your microcontroller and
generate a software framework that does
all the initialization and leaves you with
a blank main() function, to which you
add your own code. You can label the
pins of the microcontroller (bonus points
if you use the same names as on the
schematic!).

The HAL libraries hide a lot of the
complexity of setting up some of the pe-
ripherals, but they are not perfect and so
must be used with caution. Lots of re-
sources online show how to use the IDE
to set up the clocks, UARTS, timers, USB
ports, and the like on an STM32 proces-
sor, including ST’s own getting started
guide [6].

Once saved, the IDE then generates a
set of #define lines for the I/O pins that
you can use in your code, as well as a
complete set of initialization routines.
At this point, you can continue to use
the IDE or ignore it and use make with
the generated Makefile. However, if you
stay with the IDE and have your hard-
ware connected by an ST-Link program-
mer, a single mouse click in the IDE on
the Run menu will compile, download,
and run your code. This level of pre-
configuration (including, if you want,
the inclusion of a real-time operating
system (RTOS) such as FreeRTOS) can
leave you free to concentrate on your
application code. In a commercial envi-
ronment, time-to-market is everything,
and time savings like this can be
invaluable.

Redirecting stdin and stdout
Adding printf() statements to code is a
time-honoured and useful debugging
technique. In the STM32 environment,
redirecting the printf() output to a serial
port is straightforward; it then can be
connected to a terminal emulator
(e.g., Minicom) running on a laptop.

The low-level urite() function is de-
fined in an STM32 library. The default
implementation calls __io_putchar() in
the C standard library, and in the embed-
ded version of the library, the data goes
to the equivalent of /dev/null.

The default _write() has weak attri-
butes, which means it can be overridden
by an alternative implementation simply

by providing a replacement function
with the same signature without the
weak attribute (Listing 3).

Once implemented, the full formatting
power of printf() is available to output
data to an external terminal. A similar
technique can be applied to reading
data from the terminal with getchar()
or scanf():

// read from serial port
int _read(int file, char *data, int len)
{
uint8_t ch;
HAL_UART Receive(&huart3, &ch, 1, -1);
return 1;

}

Software Summary

Unlike many command-line programs
running on Linux or any other OS, noth-
ing much happens in the main() of much
embedded firmware, and in the present
case, once the appropriate timers have
been started and interrupt handlers reg-
istered, main() simply enters an idle
loop. Hardware initialization has oc-
curred in code generated by the IDE be-
fore main() is called, according to the de-
vice configuration shown in Figure 3,
and in other settings in the IDE. The tim-
ers handle the display refresh and multi-
plexing, and the interrupt service rou-
tines are called when the push-buttons
are pressed to change the time, set the
alarm, cancel the alarm, or change the
display brightness. That’s it!

The Completed Unit

I used FreeCAD to design an enclosure
for the completed unit with the use of
a STEP file of the PCB assembly ex-
ported from KiCAD, to ensure a good
fit and calculate the locations of fixing
holes and the like. Although the case
was made by hand from wood, as de-
scribed below, the 3D model ensured I
was able to cut the required pieces

correctly the first time, eliminating
wasted time and materials. The 3D
model was also very useful in simply
visualizing the finished item.

FreeCAD is another open source pack-
age, and every time I return to it, I find
the developers have taken another step
in increasing its functionality. It really is
an exemplary open source project.

Construction

The front panel of the unit is a 3mm-
thick piece of green-tinted Perspex, and
the PCB with all the displays and other
components are mounted directly be-
hind this acrylic sheet. The PCB was
manufactured with a black solder resist
(mask) to avoid it being visible. The
green tint does a good job of hiding the
internals whilst letting through the green
LED light.

The case is very simple (Figure 4). 1
wanted a real wood case for a retro
feel. It’s cut from a strip of oak 50mm
wide and 8mm thick (2 inches by 5/16
inch for my American friends). The
four sides are cut at an angle of 45 de-
grees to form mitred joints and glued
together. Small wooden blocks are
glued internally for mounting the PCB,
and the front panel is a simple friction
fit into the aperture. The back panel is
a similar piece of opaque white Per-
spex fitted to the PCB with stand-offs.
It has holes for mounting screws and a
larger aperture to allow the micro-USB
plug to pass through to the PCB-
mounted USB socket.

The wooden case has a hole drilled in
the top to receive the alarm cancel but-
ton. Small wooden feet are cut at an
angle from an off-cut of the same wood,
to set the clock at a slight upward tilt.
Clear varnish protects the wood and
completes the retro look. The dimen-
sions were taken from the 3D model,
which again proved invaluable in elimi-
nating any nasty surprises.

Synchronous

ammpesigns o
o o o e e e 8

e T

Figure 4: The front and back of the alarm clock showing the wooden

enclosure.

feoseseenseneSOOROORNOIONOOINROIOORNONOSEONOOONONOSONRNOOSONONOORNONOOOROOOORORONOOODYS

DIY Alarm Clock PROJECTS

Wrap Up

This clock was a fun project: Once
built, it is not dependent on any other
equipment but is a useful object in its
own right. I know these days there’s al-
ways a phone to tell the time, but once
you look at your phone, you can be
drawn into your day rather than turning
over and going back to sleep! This clock
is clearly visible from my beside cabinet
without raising my head, and with the
display dimmed, it does not flood the
room with light. I think the retro look is
quite pleasing, but that’s a matter of
taste, of course. I’ve made a few of
these clocks to give as gifts, and it will
be interesting to see how they are re-
ceived. The completed design, both
hardware and software, can be found at
my GitHub page [9]. mmm

Info

[1] STM32F072CBT6: https.//www.st.com/
resource/en/datasheet/DM00090510.pdf

[2] Seven-segment LEDs: https://www.
kingbrightusa.com/images/catalog/
SPEC/SA10-21GWA.pdf

KiCad: https://home.cern/news/news/

computing/kicad-software-gets-cern-
treatment

[3

—

[4
[5

_—

FreeCad: https://www.freecad.org/
STM32CubelDE:
https://www.st.com/en/development-
tools/stm32cubeide.html|
STM32CubelDE getting started:
https://wiki.st.com/stm32mpu/wiki/
How_to_get_started_with_STM32Cu-
belDE_from_scratch

[6

—_—

[7

Display multiplexing:
https://en.wikipedia.org/wiki/
Multiplexed_display

[8

—_—

Switch bounce: https://en.wikipedia.
org/wiki/Switch#Contact_bounce

[9

Author’s GitHub project page:
https://github.com/
andrewrussellmalcolm/LEDClock

Author

Andrew Malcolm (MIET,
CEng) is a retired hard-
ware and firmware en-
gineer. He maintains a
keen interest in engi-
neering in general and
building embedded projects like this one in
particular. He is a keen user of Linux and all
its available open source and free engi-
neering tools. You can contact Andrew at
andrewrussellmalcolm@gmail.com.

PROJECTS rt Home Info Center

Figure 1: A lean, mobile information display fits
anywhere and is frugal in terms of resources.

14

TEIDE 18 KITEHEN

IVINGADOM &2 STUDY

HOME

000N ONOOONOSISONONOONOOSNOONODIOONOOIOROIONAOOIBOADS

Create an information center with the
Raspberry Pi Pico W and Python

Pocket Sized

You don’t need much to create a smart home information
center - just a Raspberry Pi Pico, an ePaper panel, a battery,

and some Python. By swen Hopfe

eople want a variety of infor-
mation presented in the same
place. On the road, a smart-
phone plays a central role for
most. At home, you might have legacy
displays for heating control, an alarm
system, a weather station, and so on. A
common display is useful for grouping
data from different sources without the
need to call up different apps or read the
data in different places. A Raspberry Pi
Pico W lets you build your own model.
A home automation solution already
collects many useful values. For this
sample project, I added news and a
weather forecast through a connection to
the Internet. To make the device com-
pact and mobile, it has a battery. The
display and con-
troller need to be
frugal in terms of
power consump-
tion, which is
where the Pico W

Outside

18 Kitchen

Livingroom 22 Study

Bedroom

MAKERSPACE

2.0 Aquarium 23

comes in handy. It
connects to the
WiFi network, col-
lects the informa-
tion, and displays
it on a small
screen (Figure 1).
I deliberately
kept the controls
as simple as pos-
sible. Three
screens show the

news, weather, and home tempera-
tures; where needed, screens branch
out into submenus. I did not want to
switch the various actuators of the home
automation system - simply display
their status.

I specifically prioritized minimal
power consumption, which is why I
chose the Waveshare 2.9-inch Cap-
Touch ePaper display module for the
Raspberry Pi Pico [1]. It has a slot for
the Pico at the back, which in turn
supports touch operation, and as with
the Pico, you can switch the mini-
screen to sleep mode. The complete
circuit can be disconnected from the
battery during extended periods of dis-
use. So I wouldn’t need to change the
battery, I used a lithium-ion polymer
(LiPo) battery and charging electron-
ics, which meant I was able to charge
the device with a power supply unit
over USB when required.

Pico W

The basis of the project is the Rasp-
berry Pi Pico W and its Python firm-
ware. Unlike the single-board comput-
ers (SBCs) in the Raspberry Pi family,
the microcontroller requires very little
preparation. To program the microcon-
troller unit (MCU), you just need to
connect it to a computer over USB. In
the development phase, the controller
can be fed external commands in an
integrated development environment

MAKERSPACE-MAGAZINE.COM

Lead Image © donatas1205, 123RF.com

Parts List

Raspberry Pi Pico W

LiPo battery (1000mAh)

Alternative 5V power supply
e Case

Push-button switch

Wiring, installation material

(IDE) such as Thonny. You only transfer the finished

code to the module at the end.

One advantage of microcontrollers over computers is
their robustness. You don’t run the risk of damaging a
storage medium by turning it off abruptly; this feature is

useful for the current project.

Layout

The Pico W slots in at the back of the
ePaper panel. The protruding front of
the touch variant of the 2.9-inch panel
(Figure 2) proves to be useful for the
construction, removing the need for an
additional covering frame. Slotted into a
recess in the case, everything looks neat
from the front. During the installation,
you need to work quite precisely to use
the narrow adhesive border: Take care
not to damage the delicate connections
from the printed circuit board (PCB) to
the display panel.

The goal of the build was to keep the
case as flat as possible, so it can be
used as a tabletop variant and as a
wall unit. The Pi Pico’s slot at the back
of the ePaper doesn’t prove to be con-
ducive to a low build height; therefore,
it makes sense to position the LiPo bat-
tery at the side. You can choose flatter
batteries that involve some sacrifices
in terms of capacity, but they are still
powerful enough for a few days of run-
time. LiPo batteries are compact and
lightweight and will survive many
hundreds of charge cycles - ideal for
this small device.

The number of components is man-
ageable (see the “Parts List” box). You
also need to assign some space for the
charging electronics, which incidentally
also act as a DC/DC converter for con-
verting the LiPo battery’s 3.7V to 5V op-
erating voltage. I also integrated a sepa-
rate on-off switch. I did not want to use
the buttons on the ePaper module; in-
stead, the device is controlled by touch
input only during operation. In the end,

ePaper panel (Waveshare Pico CapTouch ePaper 2.9)

Pimoroni LiPo shim for Pico charging electronics

AL ERELEREESEEESEEEEEEEEEEENEE R EERE SRR R E RSN R RS R RN E NN RN SN ENRNENNR.]

LTI THTH
JL 54 T34 SN
LTI
L ST
(L4 54
oy,
s,

Figure 2: Thanks to the protruding front on the panel,
you can do without a separate cover frame.

File Edit View Run

$r O

infodisplay.py

Device Tools Help

O -
70, 248)
1)

248)

78 13
WEATHER

Min 11
Min 11
Min 11

Tomorrow

Bedroom

Figure 3: The Thonny IDE is ideally suited for integrating various
Python interpreters.

15

I only had to provide an opening for the
USB charging port.

Control

The circuitry is controlled by a script
on the Pico. As usual, before applying
the supply voltage, pressing the BOOT-
SEL button of the Pico opens a window
in the file manager where you place
your program text. This operation
works smoothly in both Linux and
Windows environments. The Python
firmware expects a file named main. py,
which in this case already contains all
the libraries needed.

If you do not want to switch manu-
ally between mass storage and pro-
gramming mode every time, you will
appreciate a development environment
such as Thonny (Figure 3). At first
glance it seems relatively simple, but
turns out to be extremely convenient
when integrating various Python inter-
preters. On the Pico, it is absolutely my
favorite tool.

The project requires Internet access
for the display. After the first start-up,
registering the display (or the Pico) as
a supported device on the WiFi net-
work in the settings of the home router
and assigning it a permanent local IP
address and unique name is recom-
mended. In the test phase, a USB con-
nection from the PC to the Pico is suffi-
cient and supplies the attached display
with power, as well.

The script [2] shows three screens
from different sources. NEWS lists head-
lines from national news providers,
WEATHER uses weather data from the

Figure 4: The ePaper display only requires energy

when changing the display.

16 MAKERSPACE

weather service. HOME presents values
from the home server.

For further processing, you need to
import data in XML and JSON formats
for the news and the weather forecast. In
the Python script, you can do this easily
without having to include additional
classes with elaborate import filters. Of
course, if the provider changes, this
means making adjustments to match.

For the values around the house
(e.g., the temperatures of the individ-
ual rooms, the outdoor area, or the
aquarium), my home automation solu-
tion provides its data as files that have
been prepared on my own server for
the sake of simplicity. I just need to
read the files.

ePaper Programming

ePaper does not just mean the electronic
edition of a printed magazine. In elec-
tronics, ePaper or elnk displays work on
the basis of electrophoretic “ink.” Be-
cause they are not self-luminous, they
are best read when ambient light is
sufficient.

A key technical feature of such dis-
plays is that they only require energy
when changes occur. In idle mode, the
control consumes an almost negligible
amount of power, which predestines
ePaper displays for mobile and battery-
powered solutions. The catch is that you
have a long wait when deleting and up-
dating content, especially on large dis-
plays; also, some flicker can occur. Only
a few models can handle partial updat-
ing, which eliminates such problems
somewhat.

Initialize
Idle

0000000000000 00000000000000000000000000c000000000d00bsROILIROIOLBEBRLBIBLDS

PROJECTS Smart Home Info Center

ePaper and elnk displays are particu-
larly suitable for displaying content that
changes infrequently (Figure 4), which
is not a problem in this project because
you don’t have to check the news,
weather, or temperatures every minute.
Also, the display does not need a con-
stant time display. The monochrome dis-
play also has a partial refresh function,
which is a useful prerequisite for conve-
nient reading.

Like other modules with different
technologies (OLED, LCD), the ePaper
display requires an appropriate driver
in MicroPython to provide simple
methods for control, such as output-
ting text and graphics, which is the
Python EPD_2in9_Landscape class in the
code. Because the display does not
have any built-in fonts in the hardware
and the Pico does not address external
memory, all font definitions are inte-
grated into the source code.

One special feature of the panel is its
touch input. More detailed instructions
can be found in the sample code on
Waveshare [3] and its GitHub site [4].
Controlled by interrupt requests (IRQs),
you field the necessary coordinates and
then use them for further processing to
follow different branches in the program
sequence.

Operations

I wanted to keep the operation of the in-
formational display as simple as possi-
ble. After switching on, the display tells
you about the successful connection to
the Internet and services before display-
ing the first screen.

WEE 7

Weather

Figure 5: A simple tap lets you jump from one
screen to the next.

MAKERSPACE-MAGAZINE.COM

oo sasoendERNOSOOROOINOIOONOOINROIOOORNONOSEONOONONINOSONRNOOSONONOONONOOOROOOORORONOOODYS

Smart Home Info Center PROJECTS

A single tap takes you to the next
screen in each case (Figure 5). Once
you have browsed all three screens, the
device will ask on the - now split -
screen if you want to turn it off. At this
point, you can either scroll forward
from the beginning or switch the dis-
play and the Pi Pico to sleep mode.
The device transitions to this mode if
there is no input for a long period of
time. After switching off and back on
with the outer switch, processing starts
again.

Conclusions

The information display sits on my desk
because I want to have it conveniently in
sight in a place where I often spend
time. It’s been in operation for a few

days and has already proven its value; I
find myself taking a quick look at it
every now and then.

As is so often the case, you have some
scope for improvement. I would like to
add more sources around the house and
web and integrate an icon bar to make
everything more interesting and more
convenient to use. My GitHub site [5]
has the current state of the software and

Author

Swen Hopfe works for a medium-sized
company with a focus on smart cards and
near-field communication (NFC). When he
is not taking photos in the great outdoors,
or in his garden, he focuses on topics such
as the Raspberry Pi, Internet of Things,
and home automation.

provides more detailed information on
the project. mmm

Info

[1] Waveshare CapTouch ePaper 2.9:
https://www.waveshare.com/
pico-captouch-epaper-2.9.htm

[2] Code for this article (English text and
comments): https:/linuxnewmedia.

thegood.cloud/s/XnzsiEKtagjHKr3

[3] CapTouch wiki:
https://www.waveshare.com/wiki/

Pico-CapTouch-ePaper-2.9

CapTouch GitHub:
https:/github.com/waveshareteam/
Pico_CapTouch_ePaper

[4]

[5]1 Project on GitHub:

https:/github.com/swenae/infodisplay

Soar High with Pl: We camplete
imulater

MAGAZINE

Intrusion
Detection

Protect your hom
with a Raspberry

Linux Magazine

Print

D SUBSCR

shop.lint

Expand your Linux skills:

In-depth articles on trending
topics, including Bitcoin,
ransomware, cloud computing,
and more!

How-tos and tutorials on useful
tools that will save you time and
protect your data

never miss another issue!

Need more Linux?
Subscribe free to Linux Update

Our free Linux Update newsletter delivers insightful
articles and tech tips to your inbox every week.

bit.ly/Linux-Update

0

i

S

Y2 Ye

ription

)TIC

pse

Ok

Troubleshooting and optimization
tips

News on crucial developments in
the world of open source

Cool projects for Raspberry Pi,
Arduino, and other maker-board
systems

Go farther and do more with Linux, subscribe today and

Creatin
Imageg
I you are look;
ng 1o cu
3800100, e s ygy e YO Linux
00! 00 for croaing ,m.m: ::}mw

9 Custom ISo

0000000000000 000000000600000000000000000c000000000d00bsROGOIROIOLARBIBLALLYS

PROJECTS DIY Lenticular Camera

)

,“'

Make a camera for
lenticular photography

Wiggle Time

You can take lenticular images with a homemade camera
to recreate the "wiggle” pictures of your childhood.

By Glinter Pomaska

enticular images store multiple
exposures in the same area.
Animation is achieved by tilt-
ing the image. Another appli-
cation creates a spatial appearance
without special tools (autostereoscopy).
The digital version of this often shows
up on social media as a “wigglegram.”

Lenticular Cameras

On the consumer market, lenticular cam-
eras are sold under the name ActionSam-
pler. More than 40 years ago, the four-
lens Nishika (Nimslo) appeared,

Figure 1: With four cameras, you can take a total of eight images at
the same distance by moving the camera a short distance.

18 MAKERSPACE

followed by Fuji’s eight-lens Rensha
Cardia in 1991. Unlike the Nishika’s
synchronous shutter action, the Fuji ex-
posed the 35mm film sequentially. Even
today, the analog scenes are still very
popular on Instagram and the like.

One way of creating a multilens digital
recording system is to use a Raspberry Pi
and a Camarray HAT [1] (hardware at-
tached on top) by ArduCam [2]. The cam-
era I make in this article uses four Sony
IMX519 sensors arranged at a distance of
4cm apart (Figure 1). After the first ex-
posure, you can move the device by half
the camera distance, which produces
eight shots of a subject at equal distances
with a total of 32 megapixels (MP).

Lenticular Technology
The predecessors of today’s lenticular
screens are corrugated and lamellar
screens that take two and three display-
able images, respectively. Unlike the pla-
nar image strips of their predecessors,
the lens screens commonly used today
are transparent films of semi-cylindrical
strips that show multiple images simul-
taneously [3]. Depending on the view-
er’s angle of view, the left eye sees some-
thing different than the right eye, and
the viewer perceives the view as three-
dimensional (Figure 2).

The lenses differ in terms of thickness
and curvature radius; resolution is stated
in lines per inch (Ipi). Changing the

MAKERSPACE-MAGAZINE.COM

Lead Image © 3355m, 123RF.com

AR AR R R R R R A R E R R R R R R A R A N E R A R RN R R N R R R A R R R R R R A R N A N R N N R N N R A NN NN N

Ll (LY

Figure 2: Depending on the viewing angle, the left and right eyes see
different images, and together perceive a three-dimensional image.

image, animation, and zooming and
morphing effects can be achieved with
image strips arranged horizontally. To
separate spatial images you need vertical
image strips; the input images are en-
coded strip by strip in line with the lens
spacing and are printed on a self-adhe-
sive foil or as mirror images on the re-
verse side of the foil.

You can achieve a spatial vision effect
by nesting the individual images inside
each other, which leads to image sepa-
ration for the viewer. However, you do
not need to restrict yourself to two im-
ages; instead, you can compile a series
of images. To do this for static scenes,
you move the camera step-by-step. Al-
ternatively, you can use camera tech-
nology with multiple lenses, which is
also how to capture dynamic scenes.
StereoPhoto Maker [4] is freeware for
preparing image series. If you want to
look more closely into wigglegrams, it
is a good idea to take a look at the Tri-
axes 3DMasterKit [5] software.

Four-Lens DIY Camera
As the control unit, I will add the Ardu-
Cam Camarray HAT to a Raspberry Pi
4B. The Pivariety manufacturer makes
extended solutions for Raspberry Pi stan-
dard cameras that act as Video for Linux
version 2 (V4L2) devices. The HAT oper-
ates four Sony IMX519 sensors over a
Camera Serial Interface (CSI), which you
address on the I2C bus. The sensors
have an image memory of 16MP, but de-
pending on the addressing, one or more
sensors share the image memory. The
sensors can be operated in autofocus
mode or with manual adjustment. The
field of view is 80 degrees horizontally,
and sharpness starts at about 8cm.
While you are on the move, a 5V
power bank supplies the unit with en-
ergy. Three-dimensional printed compo-
nents let you design a case. The camera
boards sit side by side in the supplied
brackets. Of course, you can’t adjust a
setup like this with single-pixel accu-
racy, but you don’t need that because

DIY Lenticular Camera PROJECTS

you can use the application software
instead. The housing is designed so you
can move the entire lens board by half
the camera distance. In this way, the
data for a lenticular image can be as-
sembled from eight exposures, each
2cm apart over a base of 14cm.

The multicamera adapter is connected
to the sensors by four interfaces that use
ribbon cables. You then need to connect
it to the computer on the CSI interface.
Three spacer screws secure the mechani-
cal connection to the Raspberry Pi; the
5V power supply comes through the
GPIO pins. How you arrange the cam-
eras is entirely up to you. The boards
each come in a small case, and you in-
stall them 40mm apart. If you do not use
the housings, the minimum distance is
reduced to 24mm. The software ad-
dresses the sensors as a single frame.
By setting the corresponding I2C param-
eters, you can configure one, two, or
four sensors. The cameras always have
to share the available resolution.

The default is

i2cset -y 10 Ox24 Ox24 0x00

(i.e., Quadro mode). Accordingly, the
resolution for each image is restricted to
a maximum of 2328x1746 pixels, and
synchronization is in pairs at frame level.
If you use the following parameters:

i2cset -y 10 Ox2u4 Ox24 0x01

the result is a resolution of two times
2328x3496 pixels in dual mode, which is
extrapolated to two times 4656x3496
pixels later in the application. You may

Figure 3: The close-ups on the right reflect the camera arrangement. The cabling diagram is shown on the left.

MAKERSPACE-MAGAZINE.COM

MAKERSPACE 19

already be familiar with image compres-
sion from stereoscopy.

The images in Figure 3 on the right
were taken from close up and therefore
clearly reflect the camera layout and ca-
bling (from left to right: RX2, RX3, RX1,
and RX0). Despite the convenient auto-
focus mode, it is important not to forget
the manual focus options. Especially at
close range, manual focus results in
some interesting photographic options
(Figure 4).

Installing the Camarray HAT
You can install the required applications
and the driver for the quad kit with the
shell script install_pivariety_pkgs.sh
(Listing 1). More information is available
in the ArduCam documentation.

After the 1ibcamera-hello command, the
camera will respond for a short while. The

libcamera-still --list-cameras

command (Listing 1, last command)
checks which cameras are connected. As
mentioned before, the software identifies
the four sensors as a single device.

Libcamera
The release of the Raspberry Pi OS “Bulls-
eye” operating system in November 2021
fundamentally changed the handling of
the camera module. Brand new libcamera
commands have since replaced the tried
and trusted command-line tools raspi-
still and raspivid. You can still use
raspistill in legacy mode, but makers
with more ambitious goals need to get
comfortable with the libcamera library.
The transition of the camera control
to the Linux kernel’s Libcamera driver
ensures a standards-compliant solution

Figure 4: By focusing manually, you can significantly increase your
freedom as a photographer.

Listing 1: Installing the Camarray HAT

$ wget -0 install pivariety_pkgs.sh https://github.com/ArduCAM/
Arducam-Pivariety-V4L2-Driver/releases/download/install script/install_

pivariety_pkgs.sh
chmod +x install pivariety_pkgs.sh

sudo apt-update

./install_pivariety_pkgs.sh -p libcamera_dev

./install_pivariety_pkgs.sh -p imx519_kernel driver_ low_speed

ool

libcamera-still --list-cameras

$
$
$
$./install_pivariety_pkgs.sh -p libcamera_apps
$
[
$

0 : imx519 [4656x3496] (/base/soc/i2cOomux/i2c@l/imx519@1a)

Modes: 'SRGGB10_CSI2P'

20

: 1280x720 1920x1080 2328X1748 3840x2160 4656x3496

0000000000000 00000000000000000000000000cnadso0tosnBORROSOABOIAIROIOGONYS

PROJECTS DIY Lenticular Camera

without proprietary code. New com-
mands such as Tibcamera-still or
libcamera-vid are available, and you
can build your own apps on the Lib-
camera code. Extensive documentation
can be found on the Raspberry Pi
Foundation [6] website.

If you have already worked with
raspistill or raspivid, it should not be
difficult to come to grips quickly with
Libcamera. The sample code

o

i2cset -y 10 Ox24 Ox24 0x00

libcamera-still 2

o

-t 30000 2

--ev -5 2

--gain 8 @2

--roi 0,0,1,1 2
--autofocus 2

--info-text "Killepitch" 2
-0 testQuadro.jpg

captures the entire image (region of in-
terest, --roi) in autofocus mode after a
preview time of 30 seconds (time out, -t)
with an exposure compensation of -5
(exposure value, --ev). The --gain 8
parameter corresponds to an ISO value
of 800, and the --info-text flag lets you
manipulate the header in the applica-
tion; the output file is assigned the name
testQuadro. jpg (output, -o).

ArduCam Synchronized Camarray HAT
Libcamera / Autofocus / Autoexposure

Subject random: test_
Two stations A/B? .y n
Quadro mode?: cy n

E 0-10) o
xposure ev (0-10]
Gain [0-24) : 8

Shutter (not in automode) 125

Default | Previous| Save | Preview m Quit

Figure 5: You can set the basic
values for the shot in a GUI.

CO0A0NO0NOONNRONDRORRSOR000R0RCERRSCRNNOTOIRRISGSOIORNOSISONONONORNORINSONORNOIOBSONRNOONORNOSOROY

Shooting Lenticular Photos
The DIY camera is designed to be point-
and-shoot, but the implementation is a
little more modest because of the avail-
able technology. In my test environ-
ment, the system is connected to the
local WiFi network behind a mobile
router. After switching on the camera,
the operating system boots and logs on
to the WiFi network. The Virtual Net-
work Computing (VNC) server starts up
at boot time.

The same applies to the graphical
user interface (GUIL; Figure 5), with
simple setup functions such as image
name, shutter speed, exposure value,
preview image, and shutter trigger. The
GUI offers more functions, but I will
not be using them for the time being.
The software, written in Python, uses
Guizero with object-oriented controls.
It keeps its settings in a dictionary and
uses system commands to call the cam-
era functions (see also the “Graphical
User Interface” box).

The images for positions A and B and
the individual image tiles end up in the
dcim/randonCode/ directory with ran-
domized image labels. The GUI displays
the generated random code, which can
be changed alphanumerically if re-
quired. You decide in advance whether
you want to create two, four, or eight
exposures. The camera settings can be
saved so that you can reuse them for
later shots. To align the camera, click
the Preview button; status messages are
displayed in the header.

Finding a shooting scenario is now
the problem. The camera is oriented
horizontally. By rule of thumb, the dis-
tance to the object is 30 times the dis-
tance from the right to the left camera
(close-up distance 1/30). Intermediate
images split this distance evenly, as
you can see in Figure 6, working with
four sensors at a distance of 12cm with
two intermediate images. This results
in a close-up distance of about 3.6m. If
you move the lens board by 2cm, you

Graphical User Interface

In the download section for this article
you will find the TentiCam.py GUI [7],
which | programmed in Python. The
dcim/ directory also contains some re-
cent images as examples of the com-
ponents of a lenticular image.

end up with four shots at 8cm apart,
and ideally approach the subject to
within 2.4m.

These approximations are only rough,
based on experience, and by no means
binding. The close-up value could well
be closer to 1/20 than 1/30. As soon as
you move your camera between two po-
sitions, you are forced to limit your work
to static objects. Manual exposure by
shutter speed and gain settings is gener-
ally recommended.

After capturing an image, you then
need to break the frame down into indi-
vidual tiles for further processing with the
help of the FFmpeg suite or ImageMagick
tools, which you can install with:

sudo apt-get install imagemagick

sudo apt-get install ffmpeg

To ensure that the images are ordered
correctly, add a numerical suffix in the
file name.

Making One Out of Many

Once you have done the field work, you
can continue processing the image series
on the computer. Download the images
with an FTP client; then, StereoPhoto
Maker (for example) will give you all the
functions you need for downstream pro-
cessing. Triaxes [8] is also a good choice
for lenticular images. With just two ex-
posures, you can create an anaglyph
image for red and cyan glasses or a sim-
ple wiggle image. More uniform motion

DIY Lenticular Camera PROJECTS

and lenticular images will always require
a series of images.

To begin, get a series of eight images
for a spatial image. The images must be
aligned uniformly; even slight skew and
small vertical differences will make the
images unusable. In StereoPhoto Maker,
select File | Multiple Images | Auto rota-
tion adjustment and select the images to
be adjusted. In the second step, you
need a common reference point in each
image. The function for this can be
found in File | Multiple Images | X-Y
adjustment and cropping.

Now you can print the image by select-
ing Edit | Create Lenticular Image. Set the
Lenticular Lens Pitch and the printer reso-
lution to match the lenticular film. Finally,
print the image with File | Print preview.
Lenticular film of 15x10cm is available
with different lens spacings with vertical
and horizontal alighment. You need to
align the self-adhesive films over the print-
out and then carefully press them on. A
laminator is useful for larger formats.

If you want to process the image series
as a wigglegram, use the ImageMagick
convert function. The following com-
mand adds all JPEGs with the image
prefix in the current directory to the
animated GIF:

$ convert -delay 10 -loop 0 2
image*. jpg <Wiggle>.gif

The playback is in an infinite loop at
10fps. The procedure depends on the

Stereobasis

Figure 6: Intermediate frames divide the base (distance between the

right- and left-most cameras).

E 21

size and number of images. Instead of a
GIF, you can use the MP4 format. A wig-
gle cannot be printed, of course, so
check out the examples online [9] if you
need a visual reference.

The Triaxes 3DMasterKit, which is a
commercial product, is a good choice for
lenticular images. The license will not
cost you much, and the investment is def-
initely worthwhile. After you upload the
frames, you can reorder them and orient
them alternately before cropping the im-
ages and computing the lenticular image.
The kit also has other useful features,
such as animations and layered 3D.

Conclusions
Lenticular images as analog 3D repre-
sentations, and animations and wiggles
for the Internet, give photographers a
creative tool. Even with a conventional
camera, you can achieve presentable
results with a little practice.

The Camarray HAT by ArduCam lets
you use a multisensor system in single,

dual, or quadro mode and construct a
DIY camera that suits your ideas. This
hardware opens up a wide field of exper-
imentation for amateur photographers,
ranging from high-quality stereo images
to low-resolution shaky images.

All you need for the build is a Rasp-
berry Pi, a multicamera system, and a
power pack. On the local WiFi net-
work, a smartphone or tablet gives you
a graphical user interface, and Python,
Libcamera, and Guizero form the soft-
ware underpinnings. StereoPhoto
Maker and Triaxes take care of down-
stream processing. mEmE

Author

Dr. Guenter Pomaska
worked for many years in
the fields of photogrammetry, |
application software
development and support.
He was teaching computer
graphics and related topics
in higher education institutes. After
retirement he directed his activities to
3D imaging.

0000000000000 000000000600000000000000000c000000000d00bsROGOIROIOLARBIBLALLYS

PROJECTS DIY Lenticular Camera

Info

[1] Installing the Camarray HAT:
https://forum.arducam.com/t/imx519-
quad-hat-mode-switching-and-faq/
2399

[2] Documentation for the Camarray HAT:
https://www.arducam.com/docs/
cameras-for-raspberry-pi/
raspberrypi-libcamera-guide/

[3]1 Source for Lenticular film:
https://www.glaserde.de/shop/
Lentikular_Folien_DIN_A6/index.htm|

[4] StereoPhoto Maker: http://stereo.jpn.
org/ger/stphmkr/index.html

[5] 3DMasterKit:
https://triaxes.com/3dmasterkit/

[6] Libcamera documentation:
https://www.raspberrypi.com/
documentation/computers/camera_
software.html

[7]1 Code for this article:
https:/linuxnewmedia.thegood.
cloud/s/XnzsiEKtagjHKr3

[8] Triaxes: https://triaxes.com/legend/

[9] 3D-Foto und Video: https:;//www.3d.
imagefact.de (in German)

Tricks and shortcuts®
for Linux geeks

= Make a multi-distribution
bootable USB stick with Ventoy

* Convert images with the powerful
Converseen GUI tool

* Working with PDFs: You don’t
need Acrobat to search, edit,

recover a password, or turn on
password protection

S0 CD/DVDIMAGES:
Mount and inspect image files

MODERN PROGRAMMING:
Write and document code in Jupyter Notebooks

LINUX-MAGAZINE.COM

Discover the secrets
of the experts

SHOP THE SHOP
shop.linuxnewmedia.com

GET PRODUCTIVE WITH
COOL LINUX HACKS

M And more!

ORDER ONLINE:

Improve your Linux skills with this cool collection of
inspirational tricks and shortcuts for Linux geeks.

M Google on the Command Line

M OpenSnitch Application Firewall
W Parse the systemd journal

M Control Git with lazygit

M Run Old DOS Games with DOSBox

shop.linuxnewmedia.com

oo sasoendERNOSOOROOINOIOONOOINROIOOORNONOSEONOONONINOSONRNOOSONONOONONOOOROOOORORONOOODYS

Raspberry Pi Pet Camera

Watching your pets with a,
Raspberry Pi and a mesh VPN

A Raspberry Pi, a Pi-compatible camera, and a) "\,,;_,
mesh VPN are all you need to watch your pets
from afar. By Bruce Hopkins

Lead Image © OLEG KIRILLOV, 123RF.com

ou have a pet, but you need

to be away from home for a

day. Is it really worth paying

for a kennel when all you
want is to keep an eye on your pet
while you’re away? Of course, you
could use a video doorbell service (like
Ring or Arlo) and simply locate the
camera device inside your home, but it
seems like overkill to pay for a
monthly service for something that you
only need occasionally. Also, for pri-
vacy reasons, some people might not
want to invite a streaming video ser-
vice into their home when they don’t
have control over how the video is pro-
cessed and stored.

On the other hand, if you have a
Raspberry Pi, an Internet connection,
and a Pi-compatible camera, it is actu-
ally pretty simple to set up your own re-
mote access pet cam with a mesh VPN.
Years ago, in order to get something like
this to work, you’d need to open a port
on your home router/firewall and en-
able port forwarding in order to allow
incoming connections. That’s a risky
undertaking, because you’re opening
the door for anyone who port scans
your router to find an entrance to your
home network. Thankfully, there are
free services available that allow you to
host your own VPN using your Internet
connection at home.

Figure 1: Installing the camera on a Raspberry Pi.

PROJECTS

23

Configuration
Raspberry Pi Configuration v x screen for y(?ur
Raspberry Pi.
System Display ‘ Interfaces ‘ Performance ‘ Localisation Click on the In-
Camera: * Enable Disable terfaces tab and
SSH: Enable * Disable make sure that
VNC: Enable ® Disable You selest -
_ tion that enables
SPI: Enable e Disable the patiara (Fig—
12C Enable * Disable ure 2). To save the
Serial Port: Enable o) Disable settings, click the
Serial Console: ® Ena D 3 OK button, and
) , then reboot your
1-Wire: Enable * Disable X
Raspberry Pi.
Remote GPIO: Enable e Disable
Cancel OK Ta.klng a
Still Photo
Now that you’ve

Figure 2: By Default, Raspbian has the camera
interface disabled, so don't forget to enable it in
order to record video or take pictures.

Setting Up a Camera on

Your Raspberry Pi

The first step is to set up a Pi-compati-

ble camera for your Raspberry Pi. I say,

“Pi-compatible” because there are

many compatible cameras that work

with the Raspberry Pi. Therefore, feel
free to find any camera that works with
your version of the Raspberry Pi and
fits within your budget. I tested my

setup with the Pi Camera Module 2 [1],

which has an 8MP image sensor and

only cost about $10 online. In case
you’ve forgotten, the Raspberry Pi in-
cludes a dedicated camera port directly
on the board that is used exclusively
for any of the Pi-compatible cameras

(Figure 1). Therefore, installing the

camera is a four-step process:

. Shut down your Raspberry Pi if it is
already turned on.

. Lift (but don’t try to detach) the
plastic guard that’s on top of the
camera port.

. Insert the ribbon cable for your Pi-
compatible camera into the camera
port, and ensure that the blue strip on
the ribbon is facing towards the USB
and Ethernet ports.

4. Push down and close the plastic guard
on the camera port to lock everything
in place.

Now that you’ve got your camera in-
stalled, the next step is to ensure that
your Raspberry Pi recognizes the cam-
era. Go to Preferences | Raspberry Pi Con-
figuration to access the Preferences

—

[\]

w

m

24

gotten your cam-
era installed and
configured, you
need to make sure
that the drivers work properly and can
recognize the camera. Therefore, take a
simple still photo (no need to try out
streaming video yet) to make sure that
the camera is recognized by your Rasp-
berry Pi. Execute the following com-
mand at the terminal:

raspistill -o petcaml.jpg

By default, the raspistill utility waits
for five seconds before taking a photo,
so be sure to wait the appropriate time,
and check your local directory to verify
that the picture was taken.

0000000000000 00000000000000b000000000000ssadsootOoORBOORNOIOONOOIOIROIOGOABOLDS

PROJECTS Raspberry Pi Pet Camera

Live Streaming on the

Local Network

Now that you know the Pi is able to
use the camera, the next steps are to
use the camera in video mode, open a
port on the network interface, and
serve the video feed to anyone who
knows the local IP address and port of
your Raspberry Pi.

These steps require both the raspivid
command and the open source VLC
media player. If you don’t already have
the VLC player installed on your Rasp-
berry Pi, execute the following command
to install it:

sudo apt install -y vlc

Next, create an 800x600 H264 video feed
at 12 frames/sec and open port 3141 on
the Raspberry Pi to serve the video as a
livestream using the Real Time Streaming
Protocol (RTSP) with:

raspivid -o - -t 0 -w 800 -h 600 -fps 2
12 | cvle -vvv stream:///dev/stdin 2
--sout '#rtp{sdp=rtsp://:3141/}' 2
:demux=h264

You might be more familiar with com-
mon TCP-based protocols such as HTTP
and FTP, but RTSP is an alternative pro-
tocol used exclusively for streaming
video and audio [2]. Because web
browsers don’t support RTSP, you need
to use video tools such as VLC or
QuickTime in order to view an RTSP

File Disc

URL | rtsp://192.168.1.123:3141

Network

Open Source

Capture

Media Resource Locator (MRL)

Stream output:

Open RTP/UDP Stream

Cancel

Figure 3: Use an RTSP client (like the VLC media player or QuickTime)
on your home computer to test the video from your Raspberry Pi.

video stream. To view the video stream
within your home network, you need to
install an RTSP client on your desktop
or laptop computer.

If you're using VLC, navigate to Media |
Open Network Stream in order to open
a dialog window that enables you to
type in the IP address and port number
for your video stream (Figure 3). The
URL for the video stream must be in
the following format:

rtsp://ip_address:port_number

Viewing the Stream

While Away

Now that you’ve got the camera and the
video streams working from inside the
local home network, it’s time to set
things up to view the pet cam while
you’re away from home. Of course, to
test this out, you’ll need access that is
different from your local LAN. You might
want to connect over your cell phone’s
hotspot for testing purposes.

Most home routers today provide net-
work address translation, which means
that the hosts on your home network are
not addressable from the Internet. One
way around this is to go to the admin
settings of your home router, open a

LA R R R EEEENEREERENE R EREEE SRR RN AR R RN R R E A N R NN RN AN RN YN NNRENNNN)

particular port, enable port forwarding
on the router, and assign the forwarded
port to the specific device (and port) that
you would like to access remotely. How-
ever, this approach is ill-advised in to-
day’s security environment, because
anyone with a port scanner can scan
your router, find the open port, and use
it to attack your network.

Thankfully, free services exist today that
allow you to securely host your own VPN
service and connect to your personal de-
vices located behind firewalls and LAN
routers. A traditional “old school” VPN
would allow you, while at home, to re-
motely connect and access the computers
and servers at your job. Using a self-hosted
mesh VPN service (in this case, I'm using
Tailscale [3]), I can be away from home at
my job (or anywhere for that matter) and
connect to the devices inside my home. Al-
though Tailscale does not have a free soft-
ware license, the company that maintains
it provides a no-cost version for personal
and hobby projects [4].

In order to set up a mesh VPN using
Tailscale, all you need to do is install the
free Tailscale client on each device that
you want to participate in your personal
VPN. Then log in to each client that you
want to connect in the personal VPN.

Figure 4: | always wonder what he’s up to while I'm away at work. This is
the face of an innocent puppy staring at a sausage behind the Raspberry Pi.

Raspberry Pi Pet Camera PROJECTS

The command to install Tailscale on
the Raspberry Pi is:

curl -fsSL 2
https://tailscale.com/install.sh | sh

Once you’ve connected your devices
over your self-hosted mesh VPN, you
can test the connectivity between de-
vices by sending a ping request to your
home PC while outside of your home
network. If the ping works, the devices
are connected.

The final step is to use your RTSP cli-
ent app just as before, but this time,
swap out the local-only IP address with
the mesh VPN address of your Raspberry
Pi. Voila, a self-hosted, mesh-VPN-en-
abled pet cam (Figure 4)!

Conclusion

This simple exercise illustrates the
power of the Raspberry Pi as a practical
tool for customizing your home envi-
ronment. If you don’t have a pet, you
can easily adapt these techniques to
watch your yard or observe wildlife. If
you really get ambitious, you could
even integrate a motion detector or set
up a Pi-compatible infrared camera for
night vision. mmm

Info

[1] PiCamera Module 2:
https://'www.raspberrypi.com/
products/camera-module-v2/

[2]1 RTSP: https://en.wikipedia.org/wiki/
Real_Time_Streaming_Protocol

[3]1 Tailscale: https://tailscale.com/

[4] Tailscale free plan:
https://tailscale.com/kb/1154/
free-plans-discounts/

Author

Bruce Hopkins is a
technical writer, and is
the author of the book
Bluetooth for Java, by
Apress Publishers. ™

25

0000000000000 0000000000000000c000000d0000soadsootOORBIOSOIRNOSIOAONOOIOIROIOONABIBOAEDLBDAERDS

PROJECTS Gesture-Controlled Book

| UL GND UCC SDA SCL INT

0.0C.0,0.00

Figure 1: You can pick up the
APDS9960 gesture sensor from the
usual retailers for around $4.00.

26 MAKERSPACE

Use gestures to browse a document
on your Raspberry Pi

Hands Free

Have you found yourself following instructions on a device
for repairing equipment or been halfway through a recipe, up
to your elbows in grime or ingredients and then needed to
turn or scroll down a page? Wouldn't you rather your
Raspberry Pi do the honors? By Bernhard Bablok

his article is about the joy of

tinkering, and the project I

look at is suitable for all kinds

of situations when your hands
are full or just dirty. The hardware re-
quirements turn out to be quite low: a
Raspberry Pi, a screen, and a gesture
sensor. My choice of sensor was the
APDS9960 (Figure 1), for which you
can get breakouts and an I12C connector
for a low price at the usual dealers
($3.20-$7.50). However, you should note
whether the sensor has soldered jump-
ers. The left jumper (PS) controls the
power supply of the infrared lamp with
the pin for positive supply voltage (VCC)
and definitely needs to be closed. The
right jumper (labelled 12C PU on the
sensor in Figure 1) enables the pullups
on the clock line (SCL) and the data line
(SDA), which is superfluous on the
Raspberry Pi; however, it doesn’t hurt to
have it.

Modern kitchens sometimes feature
permanently installed screens. If you
don’t have one, go for a medium-sized
TFT screen like the 7-inch Pi screen or
a model by Waveshare (Figure 2). If
you are currently facing the problem
that the Raspberry Pi is difficult to get,
as many people have, you can go for a
laptop instead, which I talk about later
in this article.

Installing the Software

The Pi Image Viewer program is imple-
mented in Python and is very minimal-
ist. In fact, it is an image viewer that
performs precisely one function: scroll-
ing through an image in response to
gestures. The software would even
work with a small four-inch screen
with a Raspberry Pi clamped behind it,
but it would not be particularly user
friendly.

You can pick up the software for a ges-
ture-driven recipe book on GitHub [1] by
cloning the repository and installing the
software with the commands

git clone https://github.com/bablokb/2
pi-image-viewer.git
cd pi-image-viewer

sudo tools/install

Additional information is provided in
the installation instructions in the
Readme.md file.

Implementation

The implementation is built on Blinka [2]
for the sensor and PyGame [3] for the in-
terface. PyGame is a game engine, but it
is also suitable for other applications.
Moving objects is understandably as
easy as pie (groan) for PyGame. Instead
of moving sprites, the software shifts the

MAKERSPACE-MAGAZINE.COM

Photo by Sebastian Dumitru on Unsplash

Figure 2: In the sample project, the gesture sensor sits above the

Waveshare TFT screen.

image to show a different section each
time (Figure 3).

In PyGame, rectangles stand in for
both the screen window and the image.
The window defines the global coordinate
system, and its upper left corner marks
the zero point; the (0,0) coordinate in
turn determines the location relative to
the screen. If the coordinates are (0,0),
users will see the upper left part of the
image (Figure 3, left).

If, on the other hand, the coordinates
are negative, say (-50,-50), the top left
corner is outside the window, and you
see the bottom right area of the image

(Figure 3, right). This arrangement
might sound confusing at first, but mov-
ing the image toward the upper left (neg-
ative coordinates) makes the bottom
right part of the image visible.

PyGame is controlled by events. The
program processes key events for the
four cursor keys (Listing 1, lines 12-17).
Each key is backed up by a method that
is responsible for
moving in one of
the four direc-
tions. To keep the
code manageable,
a key-value pair is

0l evnt = {}

03 time.sleep(0.1)

04 gesture =

(-50,-50)

(0.0)
(0,0)

05 if not gesture:
06 continue

o7 elif gesture ==
08 evnt['key'] =
09 elif gesture ==
10 evnt['key'] =
akit elif gesture ==
12 evnt['key'] =
13 elif gesture ==
14 evnt['key'] =

15

Figure 3: PyGame displays the image and screen as

rectangles.

16 event =

feoseseenseneSOOROORNOIONOOINROIOORNONOSEONOOONONOSONRNOOSONONOORNONOOOROOOORONRONOOODYS

Gesture-Controlled Book PROJECTS

Listing 1: Keyboard Control
(@i, 55
02 self._MAP = {

03 K_RIGHT: self._right,

o4 K_LEFT: self._left,

05 K_UP: self._up,

06 K_DOWN: self._down,

07 K_ESCAPE: self._close

08 }

Og .

10

ik 5o

12 for event in pygame.event.get():
13 if event.type == QUIT:

14 self._close()

15 elif event.type == KEYDOWN:
16 if event.key in self._MAP:
ally/ self. MAP[event.key] ()
1.8

defined up front for each direction
(lines 2-8).

Processing Gestures

Gesture processing is handled in a second
thread that polls the sensor (Listing 2,
line 4) and, from the detected gestures,
simply synthesizes the matching key
events for the PyGame main program
(line 16), which closes the circle.

The program shown here with the ges-
ture control does not completely solve
the problem. You still need to convert
your printed recipe into a (JPG) image,
but you can easily scan or take a photo

: Gesture Control

02 while not self._stop.is_set():

self._apds.gesture()

0x01:
pygame.K_UP
0x02:
pygame.K_DOWN
0x03:
pygame.K_LEFT
0x04:

pygame.K_RIGHT

pygame. event. Event (pygame.KEYDOWN, evnt)

17 pygame.event.post(event)

of a recipe book or grab a screenshot to
do that. Fairly low resolutions are abso-
lutely fine for the purposes of this
application.

If the recipe is a PDF, the following
one-liner will help:

convert -density 150 in.pdf 2
-append out. jpg

This command uses the convert com-

mand from the ImageMagick package,
which is typically already in place. If

not, just grab it with your

distribution’s package manager. The
-density option lets you control the
image resolution. If the PDF has multi-
ple pages, the command arranges the
pages one below the other. If you pre-
fer horizontal scrolling, replace -append
with +append. Two more parameters
handle fine tuning: -trim removes the
white border, whereas -sharpen 0x1.8
sharpens the result.

You still need two things before you
can start the image viewer with a dou-
ble-click: a pi-image-vieuer.desktop
file, which registers the image viewer
as a program for

icot Cake

>dients:

Figure 4: Laptop, MCP2221, and gesture sensor.

125g Butter |

125g Sugar ||

processing JPGs,
and a file that
stores the image
viewer as the de-
fault display pro-
gram. Both points
are described in the
Readme file for the
GitHub project.

Laptop Instead
of Pi

The image viewer
and gesture control
also work without a
Pi on a normal lap-
top (Figure 4), be-
cause Blinka and Py-
Game run the same
way on popular
desktop operating
systems. However,
because these sys-
tems don’t usually
have a freely accessi-
ble 12C port, you
might need to retro-
fit one on a USB-to-
12C bridge. The
MCP2221 microchip
does this easily and
inexpensively for
$3.00 and up [4] or
with a Raspberry Pi
Pico [5].

Conclusions

A few lines of PyG-
ame code and a few
lines of APDS9960
code, mostly copied
from sample code

0000000000000 00000000000000000000000000cnadso0tosnBORROSOABOIAIROIOGONYS

PROJECTS Gesture-Controlled Book

online, is all it takes for this applica-
tion. Because the key events are simu-
lated, you can do without a keyboard.
The principle can also be transferred
to other hardware. For example, you
can find low-cost displays without
touch input. Instead of a full key-
board, a simple MPR121 keypad [6]
connected by 12C might also do the
trick. Just as the code in the image
viewer translates gestures into strokes,
it would translate touch events for the
key sensor.

You can take this solution one step
further with the python3-evdev library,
which lets you generate arbitrary (sys-
tem) key events, allowing you to control
any program with gestures or by touch -
not just those that are designed for touch
control like the Pi Image Viewer.

Voice control is an alternative to ges-
ture control and is now suitable for prac-
tical use on a Raspberry Pi with voice in-
terface modules such as the Seeed Re-
Speaker [7]. mum

Info

[1] Pilmage Viewer: https://github.com/
bablokb/pi-image-viewer

[2] “CircuitPython for Raspberry Pi and
MCUs"” by Bernhard Bablok, Linux
Magazine, issue 234, May 2020,
https://www.linuxpromagazine.com/
Issues/2020/234/CircuitPython/

[3]1 PyGame: https://www.pygame.org

[4] Adafruit guide to the MCP2221:
https://learn.adafruit.com/
circuitpython-libraries-on-any-
computer-with-mcp2221

[5] Adafruit guide to the Pico as an 12C
USB bridge: https:/learn.adafruit.
com/circuitpython-libraries-on-any-
computer-with-raspberry-pi-pico

[6] MPR121 keypad: https://www.
sparkfun.com/products/retired/12017

[7]1 Seeed ReSpeaker: https:/wiki.
seeedstudio.com/ReSpeaker/

Author

Bernhard Bablok works at Allianz Tech-
nology SE as an SAP HR developer.
When he’s not listening to music or out
and about, he’s busy with topics related
to Linux, programming, and small-board
computers. You can contact him at
mail@bablokb.de.

28

oo sasoendERNOSOOROOINOIOONOOINROIOOORNONOSEONOONONINOSONRNOOSONONOONONOOOROOOORORONOOODYS

DJI Ryze Tello PROJECTS

Programming the DJI Ryze
Tello drone with Python

Fleet Flyer

Drones are more fun if you can program the unmanned aerial
vehicle yourself. The DJI Ryze Tello and Python make this

possible. By Martin Mohr

Lead Image © Leonid Eremeychuk, 123RF.com

n this article, I work with the DJI

Ryze Tello drone, which is avail-

able on Amazon [1] and from

other vendors for around $99 (£99/
EUR100). Why this model? The drone
was designed for educational use and has
open interfaces for that purpose. In other
words, you can develop programs for the
drone in Scratch or Python.

To familiarize yourself with the drone’s
capabilities, you first need to download
the app that gives you manual control of
the drone. The drone’s battery lasts about
13 minutes, and the control range is
about 100 meters. Because it is intended
for operation inside buildings, this range
is fine. If you get lost, the built-in 720p
camera with electronic image stabilizer
lets you view your current location.

For more intensive use, a Tello with the
indispensable boost combo add-on adds
$49 (£39/EURA4S) to the price. Among
other things, you get two extra batteries
and a propeller protection set. During your
first programming attempts, the propeller
guards will definitely help prevent serious
damage (Figure 1). Further information
about the DJI Ryze Tello can be found on
the manufacturer’s website [2]; the essen-
tial technical data is shown in Table 1.

Software Installation

To download the app for the drone,
search for Tello in the Google or Apple
app store. The app also lets you update

Figure 1: The DJI Ryze Tello with the highly recommended propeller
guards from the accessories range. Source: DJI

Table 1: DJI Ryze Tello Overview

Feature Spec

Dimensions 98.0x92.5x41.0mm

Weight 80g, including propeller and battery

Battery 1.1Ah/3.8V (removable)

Connector Micro-USB port for charging

Other Rangefinder, barometer, LED, vision system, WiFi 802.11n,

720p live streaming

Max. flight range 100m

Max. flight altitude 30m

Max. speed 8m/s (18mph)
Max. flight time 13 min

Camera

Field of view (FOV) 82.6 degrees
Photography 5Mpx (JPG, 2592x1936px)
Video HD720p30 (MP4)

Updating the Firmware

You never know exactly how long the
drone has been sitting around in a
warehouse, so before doing anything
else, it's a good idea to update the de-
vice's firmware from the app on your
smartphone. To begin, connect to the
drone and then switch to the app’s set-
tings with the gear icon. When you get
there, tap More, then the three dots
(Figure 2), and Update in the Firmware
Version line. You will then see the re-
lease notes and can start the update
process by tapping Update.

the drone’s firmware. Instructions on
how to do this can be found in the “Up-
dating the Firmware” box.

To connect to the drone in the app,
first turn on the drone and wait until the
LED flashes, which indicates it is start-
ing a separate WiFi network to which
you need to connect. Now launch the
Tello app and connect to the drone. The
app tells you the steps required. If every-
thing worked, you will see the camera
image in the app. The drone can now be
launched with the lift-off icon at top left.

You can control four degrees of free-
dom in the app: forward and backward,
left and right, up and down, and rotation
about the z axis in both directions. You
will encounter these four degrees of free-
dom again when creating programs. To
make sure everything is working prop-
erly, go on a small test flight before you
try controlling the drone with Python.

Before you start programming, you
might want to install a suitable inte-
grated development environment (IDE).
PyCharm Community by JetBrains is a
good choice for this project. You will
find versions for different operating sys-
tems on the project website [3]. The in-
stallation completes the preparations,
and you can now proceed to write your
first program for the drone.

Connection Test
To create a program with PyCharm, select
File | New Project. Leave all the default
settings as is except for Location: Enter a
meaningful project name in this field as the
last component of the path. After pressing
Create, the IDE directly creates a main.py
file, where you will save your own program
after deleting the sample code in the file.
To use your scripts, you need to in-
clude a drone control library [4] in your

30

IMU St:

0000000000000 0000000000000000c000000d0000coodo0tOORBNOSORABDIOIABRIARDGE

PROJECTS DJI Ryze Tello

More

Normal

Center of Gravity Calibration

Firmware Vel

Loader Version

> Appearance & Behavior
Keymap
> Editor
Plugins
> Version Control
v Project: pythonProject
Python Interpreter
Project Structure
> Build, Execution, Deployment
> Languages & Frameworks
> Tools
Settings Sync
Advanced Settings

Settings

Project: pythonProject > Python Interpreter =

Python Interpreter: | @ Python 3.8 (pythonProject)

Trythe redesigned packaging support in Python Packages tool window.

+

Package
djitellopy
numpy
opencv-python

pip

setuptools
wheel

Lol

Version
2.4.0
1.243
4.7.0.72
22341
65.5.1
0.38.4

Latest version
24.0

1.24.3

4.7.0.72

A 231.2

- 67.7.2

- 0.40.0

Cancel

Figure 3: The djitellopy library in PyCharm allows you to control the

drone.

projects by selecting File | Settings |
Project: < name > | Python Interpreter
and pressing the plus icon to install the
djitellopy library (Figure 3).

have a WiFi interface. A simple and inex-
pensive solution to this problem is a USB
WiFi adapter. I had one [5] in my tinkering
box that worked perfectly with Ubuntu.

The program in Listing 1 connects to

the drone and displays the temperature
and battery level. These two readings are
very important for drone operations. If
the charge level is too low, you do not
want to fly. If the electronics or the bat-

tery are overheating,
it’s time for a short
break. To start the
program, just click
the green arrow at the
top of the IDE. List-
ing 2 shows the pro-
gram output.
Depending on your
computer’s feature
set, if nothing is
working you might
only see an error mes-
sage. The program
must connect to the
drone’s WiFi to
achieve control. Most
desktop PCs do not

Ready to Start

You now know how to connect the com-
puter to the drone and query simple sta-
tus information, so it’s time for a small
test flight. With the program in Listing 3,

Listing 1: Opening a Connection
from djitellopy import tello
drone = tello.Tello()

drone.connect()

print("Temperature: "+drone.get temperature())

print("Battery: "+drone.get_battery())

Listing 2: Connection Output

[INFO] tello.py - 122 - Tello instance was initialized.
Host: '192.168.10.1'. Port: 'sss9o'.

[INFO] tello.py - 437 - Send command: 'command'

Temperature: 60.0

Battery: 93

[INFO] tello.py - 461 - Response command: 'ok'

Process finished with exit code 0

AR AR R R R R R A R E R R R R R R A R A N E R A R RN R R N R R R A R R R R R R A R N A N R N N R N N R A NN NN N

DJI Ryze Tello PROJECTS

Listing 3: Flying the Drone
from djitellopy import tello
drone = tello.Tello()
drone. connect()
drone.takeoff()
drone.move_forward(30)

drone.land()

launch the drone, let it fly forward a few
centimeters, and then land. Controlling
the drone always follows the same pat-
tern. You create an object for the drone
and call its methods to perform the
specific actions.

To discover what actions the object
supports, mouse over a method and press
Ctrl + Left mouse button to access the li-
brary’s source code, where you can snoop
around a bit. Alternatively, type drone.
and scroll through the menu (Figure 4). I
did look for better documentation for the
library, but my search turned up nothing.

I need to talk about one more special
method for the drone object: send_rc_
control specifies motion speeds for the
drone’s individual degrees of freedom. The
permissible values range from -106 to 100.
The method supports four parameters:

e Speed left or right

e Speed forward or back

e Speed up or down

e Rotational speed clockwise or counter-
clockwise

drone = tello.Tello()
drone.connect ()
drone. takeoff ()
drone.move_forward(36)
drone.land()
drone .|

@ land(self)

@ connect(self, wait_for_state)

@ move_forward (self, x)

@ takeoff (self)

© Lo6BER

@ move (self, direction, x)

@ get_battery(self)

© get_temperature (self)

@ get_distance_tof (self)

© get_barometer (self)

@ rotate_clockwise (self, x)

@ flip_back(self)

@ flip(self, direction)

@ flip_forward (self)

@ address

© background_frame_read

@ BITRATE_1MBPS

@ BITRATE_2MBPS

© BITRATE_3MBPS

@ BITRATE_4MBPS

© BITRATE_SMBPS

@ BITRATE_AUTO

@ CAMERA_DOWNWARD

© CAMERA_FORWARD

@ cap

© connect_to_wifi(self, ssid, password)

@ CONTROL_UDP_PORT

This method is a simple way to control
the drone remotely.

And ... Action
To complete the picture of the DJI Ryze
Tello’s feature set, take a look at how you
access the camera. To begin, you need to
include the opencv-python library in the
project. Proceed in the same way as de-
scribed for the djitellopy library. The very
powerful OpenCV [6] library provides ex-
tensive functions for image processing.
The program in Listing 4 opens the
video stream from the camera and displays
it in a new window. Note that the camera
displays the many individual images
quickly one after the other. To change the
resolution of the images, remove the com-
ment hash (#) at the start of line 8.

Good to Know

In testing, the DJI Ryze Tello turned out
to be a light-loving device. If it is too dim
in your office, the drone will not work
properly and will constantly output mes-
sages like error No valid imu. In flight,
the camera is used for navigation, and if
the camera does not have enough light,
the image becomes unusable.

As soon as you take a closer look at the
Tello’s camera, you will notice that image
processing is computationally intensive,
so reducing the resolution of the videos to
counteract this problem is helpful. Often,
even images with
a considerably
lower resolution
are sufficient for
further processing.

Nothing is more
annoying than a
drone that crashes
because of a lack
of power, so you
should check the
battery charge

02 import cv2

06 while True:

@ curve_xyz_speed(self, x1, y1, z1, x2, y2, 22, speed)

@ curve_xyz_speed_mid(self, x1, y1, z1, x2, y2, 22, speed, mid) 07

L R et ey e

Ctrl+Down and Ctrl+Up will move caret down and up in the editor Next Tip 3 08

Figure 4: All available method calls for the DJI

Ryze Tello.

MAKERSPACE-MAGAZINE.COM

10 cv2.waitKey(1)

04 drone.connect()

05 drone.streamon()

level in your program before each start
and automatically exit the program if it
is too low.

Conclusions
During this test, the drone suffered quite
a few collisions with all sorts of objects
in the office. Two propellers disappeared
never to be seen again after a crash. A
houseplant standing in the flight path
was involuntarily cut back - and it’s
surprising how far shredded leaves fly.
During your first flight attempts, take
meticulous care to remove any objects
potentially standing around in the flight
path area and fly the drone in as large a
space as possible. At the end of the day,
coming to grips with the DJI Ryze Tello
and learning more about the little flying
machine is massive fun. The only draw-
back of the compact drone is the rela-
tively poor battery capacity, which will
force you to take many breaks. mmm

Info

[1] Tello drone on Amazon: https://www.
amazon.com/dp/B07BDHJJTH

[2] Tello drone website:
https://www.ryzerobotics.com/tello

[3]1 PyCharm download: https:/www.
jetbrains.com/pycharm/download/

4

djitellopy Python library: https:/
github.com/damiafuentes/DJITelloPy
[5]1 USB WiFi adapter: https://www.
amazon.com/Edimax-EW-7811Un-
Wi-Fi-Nano-Adapter/dp/B08D3DBP55/

[6]1 OpenCV: https://opencv.org

Author

Martin Mohr has experienced the complete
development of modern computer
technology live. After completing
university, he mainly developed Java
applications. The Raspberry Pi helped
him rediscover his old love of electronics.

Listing 4: Video Stream

01 from djitellopy import tello

03 drone = tello.Tello()

image = drone.get_frame_read().frame
#image = cv2.resize(image, (200, 200))

09 cv2.imshow("Tello Drone'", image)

MAKERSPACE 31

0000000000000 0000000000000000600060000000c000000000d00bsOROOIOILROIOAREIBIALNLBLAERBDLS

PROJECTS TensorFlow Al on the Pi

32

MAKERSPACE

Artificial intelligence on the Raspberry Pi

Learning

Experience

You don't need a powerful computer system to use Al. We
show what it takes to benefit from Al on the Raspberry Pi
and what tasks the small computer can handle. sy Erik Birwalat

rtificial intelligence (AI) is on

everyone’s minds, not least

because of chatbots and the

ChatGPT text generator. Of
course, the capabilities that Al has devel-
oped go far beyond chats with a chatbot
on countless websites. For example, Al
can be used to process acoustic speech
signals, and it is the precondition for au-
tonomous driving. Some applications -
and generating Al models - require com-
puters with powerful processors and a
generous helping of storage space and
RAM. Small computers like the Rasp-
berry Pi, on the other hand, are more
likely to benefit from ready-made meth-
ods and applications that draw on Al for
their implementation.

All of these processes are founded on
machine learning (ML), which itself is
based on self-adapting algorithms that
process information from reference data.
Deep learning, as a subset of machine
learning, uses artificial neural networks
that comprise multiple hierarchical pro-
cessing layers. The neurons of the net-
work are interconnected in multiple
ways, with the individual layers increas-
ingly abstracting the reference data they
receive. Solutions or actions are then de-
rived from the results.

TensorFlow
TensorFlow [1], released by Google Al in
2015, is an open source framework that

aims to simplify the development and
training of deep learning models. It sup-
ports numerous programming languages
and can be used for various purposes,
such as the linguistic data processing in
various Google services. It can also be
used to recognize and classify patterns
and objects in images.

TensorFlow Lite [2] is a solution de-
signed specifically for the embedded and
Internet of Things (IoT) spaces, address-
ing the hardware limitations that exist
there. The version does not require Inter-
net access because it does not send data
to servers, which is a good thing not just
in terms of data protection, but to avoid
latency and reduce energy requirements.
TensorFlow Lite is not suitable for train-
ing models, but it can apply pre-trained
models. The framework uses reduced
model sizes, but the models are still use-
ful for various cases. Google also pro-
vides a web page for generating models
on the basis of object classifications; you
can use these to create your own model
and then deploy it in TensorFlow Lite.

To detect objects on the Raspberry Pi
with TensorFlow Lite, you need a fourth
generation device with a connected cam-
era. Although some third generation
Raspberry Pis are suitable for Al applica-
tions in principle, they are very slow be-
cause of their hardware limitations, es-
pecially in terms of RAM. When it comes
to the camera for Al applications, it

MAKERSPACE-MAGAZINE.COM

Lead Image © Charles Taylor, 123RF.com

GhesesoendERNOGOIORNOSONNSIOENOOINROIOORNONSEONOOONONOSONRNOOSONOOONONIOOORNOOOOONRONOOODYS

TensorFlow Al on the Pi PROJECTS

doesn’t matter whether you choose one
designed specifically for the small com-
puter that connects directly or use an ar-
bitrary USB camera. If you prefer an ex-
ternal camera, however, make sure the
Raspberry Pi OS supports your choice.
The first step is to download the latest
64-bit release of Raspberry Pi OS [3] and
transfer it to a microSD card with at least
16GB. To do so, either use a graphical
tool such as balenaEtcher or enter the
following command at the prompt:

dd if=</path/to/2
operating system image> 2
of=/dev/mmcblk0 bs=4M

Make sure the microSD card supports
fast read and write mode. It should at
least comply with the Class 10 specifica-
tion. Boot your Raspberry Pi from the
microSD card and turn to the basic
graphical configuration of the system.
Run the usual commands to update the
operating system:

sudo apt-get update
sudo apt-get upgrade

If you want to use an external camera for
object detection, connect it to the Pi and
install an application that accesses the
camera on the system, such as the
Cheese graphical program or the fsueb-
can command-line tool. Also, if you are
using an external USB camera, make
sure that its resolution is sufficient: The
fewer clear-cut distinguishing features
the objects to be detected have, the
higher the camera resolution needs to
be. If you use the Raspberry Pi’s own
camera, it must be connected to the

erik@raspberrypi: ~
File Edit Tabs Help
[# /etc/dphys-swapfile -
author Neil Franklin, last modification 2010.05.05
copyright ETH Zuerich Physics Departement

this file is sourced with .

where we want the swapfile to be, this is the default
#CONF_SWAPFILE=/var/swap

user settings for dphys-swapfile package

use under either modified/non-advertising BSD or GPL license
so full normal sh syntax applies

i# the default settings are added as commented out CONF_*=* lines

camera port of the single-board com-
puter before you boot the system for the
first time.

Installation

Because of the fast pace of technical de-
velopments in the field of deep learning
and the many components required,
installing TensorFlow Lite on the Rasp-
berry Pi is anything but trivial and is
by no means something you can do
quickly. Constantly changing dependen-
cies and new versions make it difficult
to give universal guidance. However,
you will definitely want to make sure
that you are using the 64-bit variant of
Raspberry Pi 0S. To verify that you
have the correct version of the operat-
ing system, enter:

uname -a

The output must include the aarché4
parameter. If it is missing, you are run-
ning the 32-bit variant of Raspberry Pi
0S, which rules out any meaningful
deployment of TensorFlow Lite. You
also need the correct matching version
of the C++ compiler (GCC) in place. To
check, type

gee -v

at the prompt; the output must contain
--target=aarché4-1inux-gnu.

If these conditions apply, the next step
is to adjust the swap size of the system.
By default, only 100MB are reserved as a
swap partition on the Raspberry Pi 4.
You will want to increase this value to
4GB if you are using a Raspberry Pi 4
with 4GB of RAM. Unfortunately, Rasp-
berry Pi OS limits
swap memory to a
maximum of 2GB,
and you will need
to edit two files to
be able to

v A X

continue. The first task is to disable the
swap space

sudo dphys-swapfile swapoff

and open /sbin/dphys-suapfile in an
editor to look for the CONF_MAXSWAP pa-
rameter (Figure 1). Set the value speci-
fied to its right to 4896 and save your
change. In a second file, /etc/
dphys-suapfile, look for the CONF_SWAP-
SIZE=108 option, and replace the value
of 100 with 4696 for a Raspberry Pi 4
with 4GB of RAM. For a device with only
2GB of RAM, the swap size should be set
to 4096MB, whereas 2048MB is fine for a
model with 8GB of RAM. After saving
the modified file, enable the new swap
size and check it by running:

sudo dphys-swapfile swapon

free -m

If everything meets the specifications,
you can install TensorFlow Lite. The
software will work with Python, but the
C++ API libraries are preferable because
of the far superior processing speed.
Listing 1 shows how to get TensorFlow
Lite v2.6.0, including all of its dependen-
cies, and how to compile with C++. The
build takes about half an hour.

After compiling, you need to install
modified TensorFlow Lite FlatBuffers [4];
otherwise, numerous GCC error mes-
sages will appear. Listing 2 shows you
how to remove the old FlatBuffers and
replace them with a bug-fixed version.

This change is essential because the
original TensorFlow FlatBuffers no lon-
ger work with current GCC versions. The
bug-fixed variant replaces the obsolete
serialization libraries with adapted
versions.

Options
TensorFlow Lite offers the option of
recognizing objects with pre-built

Listing 1: Installing TensorFlow Lite

$ sudo apt-get install cmake curl
set size to absolute value, leaving empty (default) then uses computed value . .
you most likely don't want this, unless you have an special disk situation $ wget -O tensorflow.zip https://github.com/tensorflow/
ICONF_SWAPSIZE=4096 - o

= 1 tensorflow/archive/v2.6.0.zip
set size to computed value, this times RAM size, dynamically adapts,

guarantees that there is enough swap without wasting disk space on excess
#CONF_SWAPFACTOR=2

unzip tensorflow.zip

restrict size (computed and absolute!) to maximally this limit
can be set to empty for no limit, but beware of filled partitions!
- INSERT -- 16,19 Top

Figure 1: Raspberry Pi OS initially requires some
adjustments for use with Al applications.

$
$ mv tensorflow-2.6.0 tensorflow
$

cd tensorflow

$./tensorflow/lite/tools/make/download_dependencies.sh

$./tensorflow/lite/tools/make/build_aarched_lib.sh

Listing 2: Installing FlatBuffers
$ cd tensorflow/lite/tools/make/downloads
$ rm -rf flatbuffers

detailed information [5] on
how to convert models to the
TensorFlow Lite format.

$ git clone -b v2.0.0 --depth=1 --recursive

https://github.com/google/flatbuffers.git

cd flatbuffers
mkdir build

cd build

cmake ..

make -j4

sudo make install
sudo ldconfig

ed i

R A

rm tensorflow.zip

models that can be classified. How-
ever, you can only create models in the
“full-fledged” TensorFlow variant. Ten-
sorFlow Lite and a Raspberry Pi are
not suitable because you need masses
of compute power. The recommended
approach is therefore to create new
models from reference data with GPU
processors because they will perform
the required computations far faster
than CPUs. Also, the models generated
in TensorFlow are not compatible with
TensorFlow Lite. You will need to con-
vert them for use in the Lite variant.
Google has already created numerous
models for TensorFlow Lite that you
can deploy on the Raspberry Pi. The
TensorFlow project website provides

OpenCV

The Open Computer Vision Li-
brary (OpenCV) [6] has another
set of libraries that you can use
on your Raspberry Pi. OpenCV
is used for gesture, face, and
object recognition and classifi-
cation. The OpenCV deep neu-
ral network (DNN) module
works with pre-trained net-
works for this purpose and can
be used in combination with
TensorFlow Lite. To install OpenCV on
the Raspberry Pi, though, you need to
resolve a large number of dependen-
cies, and you need to specify manually
a large number of flags during the
build. This difficulty prompted Dutch
Al specialists at Q-engineering [7] to
publish a freely available and BSD-li-
censed script on GitHub that lets you
work around these steps. To install and
run this OpenCV script, enter:

$ wget https://github.com/2
Qengineering/Install-OpenCV-2
Raspberry-Pi-64-bits/raw/main/2
OpenCV-4-5-5.sh

$ chmod 755 ./OpenCV-4-5-5.sh

$./OpenCV-4-5-5.sh

MobiYO.cpp [MobiYO) « Code:Blocks 1712

0000000000000 0000000000000000¢000000d0000c00dsc0RoRR SRRSO ONOIOIOIROLOLBRDS

PROJECTS TensorFlow Al on the Pi

As a final step, you need to integrate
the graphical Code::Blocks integrated
development environment (IDE) [8]
into your system (Figure 2). With its
help, you can then use TensorFlow Lite
and OpenCV to recognize and classify
objects by drawing on various sample
networks. These capabilities apply not
only to photos, but also to livestreams
from the connected camera.
Code::Blocks supports the C and C++
programming languages and is therefore
ideally suited for Al applications. The
command

sudo apt-get install codeblocks

installs the package and automatically
creates a starter on the desktop and in
the Raspberry Pi OS menu system.

Examples

After completing the installation, you
can test some sample scenarios by
drawing on a number of prefabricated
and trained code examples from Q-en-
gineering; all of these achieve very
good results on the Raspberry Pi 4,
even in livestreams [9]. Code::Blocks is
used here, too, and it even provides
slide shows of screenshots in the tuto-
rials to help newcomers gain some ini-
tial experience with Al applications [10].
Instead of the sample photos and MP4

v 8 x

®an: me

mabivD (compil

homa/pi/software/DespLeam

valew w 0}
"
struct Object
ev:iRact <floats ract
int label
n float prob
n L
2
35 static int detect_yolovi(comst cv:MALE byr. std::vector<Objectss abjects)
3% {
37 nean: et yolovd
(o5 & ethers
x O =

oM 8eC Comptter)

CiCs+ Unix (LF) S0-8859.1

Line 7. Col 3. Pos 340 insert Read

MAKERSPACE

34

Figure 2: The Code::Blocks IDE helps you use Al models.

Ieoe0sneseNOeRPERNOOOIOROIOINOIOENOOIORNROIOONRNONOSEONOOONONOSONRNOOSONOOORNONOOOROOOORORNONOOODYS

videos included in the bundle, you can
use your own pictures or video files
from the Raspberry Pi camera. All you
need to do is copy them to the appro-
priate directories and specify them as
parameters in Code::Blocks (Figure 3).

Generating Your Models
Because custom models cannot be
trained on small computers, Google
offers a web-based tool [11] to help in
the creation of models. The tool is

likelihood of correct recognition.

QO B hitpsyf

Figure 3: The object recognition elements are
shown in the original image along with the percent

suitable for various model types and
outputs them as files in the TensorFlow
format so that you can use the models
in the Lite variant after converting.
Please note, however, that generating a
model for object recognition (e.g., on
images and photographs) means up-
loading several hundred sample im-
ages. The sample images also need to
be high resolution to achieve high ac-
curacy levels later. You need to sched-
ule several hours to work with the tool
(Figure 4).

Conclusions
Al applications
with TensorFlow
Lite and OpenCV
have long been
considered estab-
lished tools and
are suitable for
production use.
However, install-
ing the individual
libraries and
frameworks on
the Raspberry Pi
involves a fair
amount of time
and overhead -
especially because

TensorFlow Al on the Pi PROJECTS

the documentation is often either out-
dated or lacking. For this reason alone, it
makes sense to check out recent tutorials
and examples to familiarize yourself
gradually with Al applications on the
Raspberry Pi. mmm

Info

[1] TensorFlow:
https://www.tensorflow.org/

[2] TensorFlow Lite:
https://www.tensorflow.org/lite

[3]1 Raspberry Pi OS: https//www.
raspberrypi.com/software/operating-
systems/#raspberry-pi-os-64-bit

[4] FlatBuffers: https:/flatbuffers.dev/

[51 Model conversion: https//www.
tensorflow.org/lite/models/convert

[6] OpenCV: https://opencv.org/

[71 Q-engineering:
https:/qgengineering.eu/

[8] Code:Blocks IDE:
https://www.codeblocks.org/

[9] Code examples:
https:/github.com/qengineering

[10] Tutorial:
https://qgengineering.eu/opencv-c-
examples-on-raspberry-pi.html

[11] Teachable Machine image model:

https://teachablemachine.
withgoogle.com/train/image

= Teachable Machine

Class 1

Add Image Samples:

] ot
Webcam Upload
Class 2

Add Image Samples:

(m)] &

Wobcam Upload

@ Add a class

Training

Train Model

Advanced

Preview F Export Model

You musl lrain a model on the lefl
can pre

efore you ¢

ew il here

Figure 4: You can create your own models with a web-based tool.

MAKERSPACE-MAGAZINE.COM

MAKERSPACE

35

ESPHome

Home

vices can be controlled
through WiFi, but often

these devices have limita-

tions. For example, they might only

work through the manufacturer’s cloud

Replacing Firmware on Commercial Devices

You can replace the existing firmware on
commercial devices with ESPHome to
gain full control over a device and use it
in ways that the manufacturer hasn't an-
ticipated. Two popular brands that have
easy-to-flash devices are Shelly [4] and
Sonoff [5]. A website [6] hosts more than
300 ESPHome device configuration tem-
plates that can help you get the most out

of them. Note that often you’ll need spe-
cial hardware to flash your own firmware
to these devices, at least the first time —
afterward you can update them through
WiFi. You’'ll need a USB-to-TTL adapter
and to connect the pins of the adapter to
the appropriate GPIO pins on the device.
This isn't always a straightforward pro-
cess (Figure 1).

Figure 1: Crocodile clips and cut resistor leads saved the day when |
wanted to flash ESPHome to this Shelly RGBW2 WiFi LED controller.

36

Creating home automation
devices with ESPHome

Automatic

any home automation de-

0000000000000 00000000000000000000000000c0od00o0RBSRRNOSIOAOAOOIOIROIOOLABIBLADS

AUTOMATION

With an ESP32 or Raspberry Pi Pico W microcontroller
board, you can easily create your own home
automation devices. Thanks to ESPHome, you don't
even have to be a programmer. 8y koen Vervioesem

service, they might be difficult to inte-
grate with your own home automation
system if you prefer to do everything
local, they might lack advanced func-
tionality, or they might be difficult to
update.

Luckily, you can install alternative
firmware on many existing or home-
made devices. In this article, I intro-
duce you to ESPHome [1], which sup-
ports numerous devices with an
ESP32, ESP8266, or RP2040 microcon-
troller (the chip in the popular Rasp-
berry Pi Pico W), although ESPHome
support for the RP2040 is still in devel-
opment. In the examples in this article,
I’ll use the Raspberry Pi Pico W. How-
ever, if you encounter any issues with
your own projects, [recommend an
ESP32 development board.

With ESPHome, you can create your
own home automation devices with a
supported microcontroller board that
you connect to LEDs, sensors, or
switches. What sets ESPHome apart
from other solutions like Arduino [2]
or MicroPython [3] is that you don’t
need to program. Instead, you config-
ure which components are connected
to which pins on the board. ESPHome
then generates the necessary C++ code
and compiles it into firmware that you
can install on the device (see also the
“Replacing Firmware on Commercial
Devices” box).

MAKERSPACE-MAGAZINE.COM

Lead Image © Valeriy Kachaev, 123RF.com

AR EREREERELEEEEEEEEEEEAEEREEEEEEE N RS AN EEEREE NN RN AR R NN RN RN RN SN SRNNRNENNHR)

ESPHome AUTOMATION

Select your device type

Select the type of device that this configuration
will be installed on.

ESP32 >
ESP32-S2 >
ESP32-S3 >
ESP32-C3 >
ESP8266 >
Raspberry Pi Pico W >

Use recommended settings CANCEL

Figure 2: Select the type of device
on which to install ESPHome.

Installing ESPHome

ESPHome is a Python program, and most
Linux distributions already have Python
installed by default. You should first
confirm that you have at least version
3.9 installed, by running the command

$ python --version

Python 3.9.15

If your Python version is older, consider
upgrading your distribution, or deploy
the ESPHome Docker image [7].

If the Python version looks good,
create a virtual environment to contain
ESPHome and its dependencies:

$ python -m venv esphome_venv

$ source esphome_venv/bin/activate

Once you’re in the Python virtual envi-
ronment, install the ESPHome package

$ pip install esphome
After the installation is complete, enter

$ esphome version

Version: 2023.6.5

to confirm that ESPHome has been in-
stalled successfully.

Creating a Project with

the Dashboard

A directory in which you store all of your
ESPHome projects is recommended.
Suppose you call this directory config.
To start the ESPHome dashboard and
point it to this directory, run:

$ esphome dashboard config/

This command starts a web server on
http://0.0.0.0:6052, which you should be
able to open in your web browser. If you
already have ESPHome devices on your
network, the dashboard will automatically
discover them.
Next, click New
Device at the bot-
tom right corner,
and then Con-

esphome:

name: linuxmag

Raspberry Pi Pico W; for an ESP32 or
ESP8266 you also need to select the
specific board. The dashboard then
creates a minimal configuration and
shows an encryption key that you can
use to allow the ESPHome device to
communicate with Home Assistant [8],
a popular open source home automation
gateway developed by the same team be-
hind ESPHome. Finally, click Install.
You can use several methods to in-
stall ESPHome to your device, but not
all of them are supported by every de-
vice. Because no ESPHome firmware is
running on the device yet, the first
method (over WiFi) is not possible; the
Plug into the computer running ESPHome
Dashboard choice isn’t available either.
You can always choose Manual down-
load, which has instructions on how to
accomplish the installation (Figure 3).
For the Raspberry Pi Pico W, you’ll
need to disconnect the board from USB,
hold the BOOTSEL button while recon-
necting the board, and then release the

Listing 1: Pi Pico W Default Config

friendly_name: linuxmag

tinue. Give your
device a name and
enter the SSID and
password for the
WiFi network to

rp2040:
board: rpipicow

framework:

Required until https://github.com/platformio/

which you want
your device to
connect, then
click Next and se-
lect your device
type (Figure 2).
In this exam-

Enable logging
logger:

platform-raspberrypi/pull/36 is merged

platform_version: https://github.com/maxgerhardt/
platform-raspberrypi.git

"7wF019sSMAKGX0081+wX4u53hBz/alHa+9bAdouUjos="

from PYPIZ ple, choose # Enable Home Assistant API
api:
Install ESPHome via the USB drive encryption:
You can install your ESPHome project linuxmag.yaml on your device via key:
your file explorer by following these steps:
1. Disconnect your Raspberry Pi Pico from your computer ota:

3. Download project preparing download...

complete when the drive disappears

5. Your Pico now runs your ESPHome project

2. Hold the BOOTSEL button and connect the Pico to your computer.
The Pico will show up as a USB drive named RPI-RP2

4. Drag the downloaded file to the USB drive. The installation is

wifi:

BACK

CLOSE ap:

Figure 3: The ESPHome dashboard has excellent
instructions for every step of the installation.

password: "20e3778465flc5blu7f8645dc237b146"

ssid: !secret wifi_ssid

password: !secret wifi_password

Enable fallback hotspot in case wifi connection fails

ssid: "Linuxmag Fallback Hotspot"

password: "DVaDAPFJNScA"

ERSPACE 37

0000000000000 00000000000000b000000000000ssasootOoORBGRRNOIOOMBOIAIROIBGONS

AUTOMATION ESPHome

button, which causes a USB drive
named RPI-RP2 to appear in your file
manager. Now, click Download project
and drag the .uf?2 file to the USB drive.
Once the drive disappears, the board
runs your ESPHome firmware, and you
can click Close.

Default ESPHome
Configuration
In the ESPHome dashboard, click Edit
in the box representing your device to
open your device configuration in a
web editor. The configuration file is
written in YAML [9], with various
key-value pairs for different options
(Listing 1).

As you can see, this configuration file
sets the device name and its friendly

name, as well as the platform and board.

It then enables logging and the Home
Assistant AP, sets a password for over-
the-air (OTA) updates, and configures
WiFi credentials and a fallback hotspot
in case the WiFi connection fails. If a
failure happens, you can connect with
your mobile phone to the hotspot of the
device to reconfigure the network. The
WiFi credentials are stored in a separate
file, secrets.yaml, which prevents acci-
dental exposure of sensitive information
when sharing your device configuration
with others.

Note that if you don’t use Home As-
sistant, you should remove the api line
and the two lines that follow; other-
wise, your ESPHome device keeps
waiting for a connection from Home
Assistant. If no connection is estab-
lished within 15 minutes, the device
will assume that something’s wrong
and reboot.

Listing 2: Blinking LED
output:
- platform: gpio
pin:
number: 32
mode: output

id: LED

interval:
- interval: 1000ms
then:
- output.turn_on: LED
- delay: 500ms

- output.turn_off: LED

38

Blinking the Built-In LED
Now you can modify this configuration
in the web editor or in your favourite
desktop or command-line editor. The
configuration file is saved in the config
directory you created. In the next exer-
cise, make the board’s built-in LED
blink by adding the configuration
shown in Listing 2.

Make sure to use the correct inden-
tation because spaces are important in
YAML. This configuration adds an
output component from the gpio plat-
form on pin 32, which corresponds to
the built-in LED on the Raspberry Pi
Pico W. Additionally, an interval com-
ponent is defined that is triggered
every 10866ms. On each trigger, it turns
on the output with id: LED, waits
5e8ms, and then turns off the same
output.

After saving the file (in the web edi-
tor at the top right), click Install in the
dropdown menu of the node and
choose your installation method. This
time you can choose Wirelessly, be-
cause your device is already running
ESPHome and is connected to your
WiFi network. Your device doesn’t
even need to be connected to your
computer’s USB port any more. Your
YAML configuration is now trans-
formed into C++ code and compiled.
If you see the message INFO Success-
fully compiled program, the dashboard
will upload the new firmware. Once
your device reboots, the LED starts
blinking.

Adding Your Device to
Home Assistant

If you’re running Home Assistant on
your home network, your ESPHome de-
vice will be recognized automatically.
In your Home Assistant dashboard,
click Notifications in the sidebar and
then Check it out at the New devices dis-
covered message. You will see the name
you assigned to your ESPHome device
(Figure 4). Click the Configure button

Listing 3: Remote LED Control

switch:
- platform: gpio
pin:
number: 32
mode: output

name: LED

Discovered

linuxmag
ESPHome

Figure 4: Home Assistant auto-
matically discovers ESPHome
devices on your network.

.ee

and then Submit to add the ESPHome
device to Home Assistant.

You will be asked to enter the device’s
encryption key. Go to the ESPHome
dashboard and find the key in the de-
vice’s YAML code. Alternatively, click
on the three dots in the box represent-
ing your device, then Show API Key.
Next, click Copy and paste the key in
the Encryption key field of Home Assis-
tant. After clicking Submit, optionally
choosing an area, click Finish to com-
plete the process. The device is added
to Home Assistant.

Remotely Control the LED
Now that you have configured your de-
vice to blink its LED and added it to
Home Assistant, you might want to
control it remotely. Instead of having
the LED blink automatically, modify
the configuration to allow you to con-
trol the LED from Home Assistant’s
dashboard. The required changes are
simple: In the YAML configuration file,
remove the entire interval block,
change the output key to switch, and
change the id key to name. You can find
the modified configuration (without
the defaults that you leave unchanged)
in Listing 3.

After installing the firmware on your
device, you can control the built-in LED
from Home Assistant’s dashboard (Fig-
ure 5). Because you have defined the
LED as a switch component, you can
turn it on and off.

Adding Sensors

Controlling a simple LED is relatively
easy with alternatives like an Arduino
sketch or some MicroPython code. How-
ever, things become more complex when
you start connecting sensors. This is
where ESPHome shines. The ESPHome
website provides documentation for var-
ious supported sensors [13], each with
simple YAML examples.

SO0 NOON0RONDORRSOR000R0CRRSOGRNNOOIRRIGSORNOISRNONOORIORSNSOROIOBSORNOONORRSORORY

ﬂ & | Firmware

Automations

No automations have been added using this
device yet. You can add one by clicking the +
button above.

Scenes L+

No scenes have been added using this device
yet. You can add one by clicking the + button
above.

Scripts [+

No scripts have been added using this device
yet. You can add one by clicking the + button
above.

Device info Controls

B wo
Firmware: 2023.6.5 (Jul 16 2023, 12:22:26) HB
W@] ESPHome >

Configuration

) ADD TO DASHBOARD

¥s] ESPHome

Logbook

© July 16,2023

inuxmag LED turned on triggered by service
switch.turn_on
23:07 PM - Now - Koen
linuxmag LED turned off triggered by service
switch.turn_off
23.05 PM - 2 seconds ago - Koen
Unavailable
linuxmag LED turned on triggered by service
switch.turn_on

12:23:04 PM - 4 seconds ago - Koen

D turned off

Figure 5: Control the LED on your ESPHome device from within

Home Assistant.

Take the MH-Z19 CO, sensor, for ex-
ample. This sensor is useful to have at
home, especially considering the impor-
tance of ventilation in the fight against
viruses. The worse the ventilation in a
home, the higher the concentration of
CO,. Not only is CO, concentration -
[CO,] - a good indication of the need
for ventilation, it has various health
hazards on its own.

Connecting the COz Sensor
The ESPHome documentation provides
instructions on how to connect and
configure the MH-Z19 sensor [14]. First,

you disconnect your Raspberry Pi Pico
W from power and put it on a bread-
board. You will be using four pins on
the MH-Z19: VIN, GND, RX, and TX.
Their names are listed on the bottom of
the sensor board. Additionally, consult
the Raspberry Pi Pico W pinout [15] or
the pinout of the other microcontroller
board you’re using.

Connect the VIN pin of the sensor to
the VBUS (which receives 5V from the
USB power supply) of the Raspberry Pi
Pico W, GND to GND, RX to GP4, and
TX to GPS (Figure 6). The configuration
for the sensor is shown in Listing 4.

e e e e s s s * e e s e

" e s e * s s s e« s o8 0

.o I I
.o R R R R R R R R R R R
L * ® o o 00
.o " e e 0 0
.. " e 0 00

—1H
D A A I A e
" e e 0 e 00 e s
L I A A AN
s e e e e e D)
I A A A A L O A I I
e e e DI I L LI
. . LY . Y

fritzing

Figure 6: Connect the MH-Z19 CO3 sensor to the Raspberry Pi Pico W.

RSPACE-MAGAZINE.COM

ESPHome AUTOMATION

In this configuration, you define a
UART bus on pins GP4 and GP5, operat-
ing at 9600 baud. Note that the RX de-
fined here is connected to the TX of the
sensor, and vice versa. The configuration
also defines the CO, sensor, which mea-
sures both [CO,] and temperature and
sets the update interval to once per min-
ute. You can remove the switch for the
LED from the configuration because you
don’t need it here.

After installing this configuration,
you’ll see the current CO, concentration
in parts per million (ppm) appearing in
Home Assistant and in the logs on the
ESPHome dashboard. Be sure to read the
ESPHome documentation on calibrating
the sensor to ensure accurate measure-
ments. Note that the internal tempera-
ture sensor of the MH-Z19B isn’t that ac-
curate; it’s primarily used as a reference
for the CO, sensor.

Automated COz Alarm
You can now read the CO, values in
your Home Assistant dashboard (Fig-
ure 7), but you might not always be
looking at your computer or phone
screen. Fortunately, we already know
how to control the built-in LED. In prin-
ciple you can now add an automation in
Home Assistant that turns on the LED on
your Raspberry Pi Pico W when the CO,
level is too high. However, this detour is
not necessary; you can achieve the same
result with ESPHome’s built-in automa-
tion features. The advantage is that these
automations continue to work even
when your Home Assistant installation
or MQTT broker (see the “MQTT Bro-
ker” box) is offline or your network con-
nection is down.

To make your Raspberry Pi Pico W
board act as a CO, alarm, turn on the

Listing 4: CO5 Sensor over UART

uart:
LX. pin:is
tx_pin: 4
baud_rate: 9600

sensor:
- platform: mhzl9
co2:
name: "MH-Z19 CO2"
temperature:
name: "MH-Z19 Temperature"

update_interval: 60s

MAKERSPACE 39

Sensors
o2 MH-Z19 CO, 915 ppm
8§ MH-Z19 Temperature 27°C

ADD TO DASHBOARD

Figure 7: Your CO3 sensor is
visible in Home Assistant.

built-in LED when the CO, concentra-
tion exceeds 1,000ppm (Listing 5).
This code first defines the LED as an
output, rather than a switch, so it’s not
controllable through Home Assistant or
MQTT. The id lets you refer to the LED
in the configuration of the CO, sensor.
Next, it modifies the co2 section in
the CO, sensor configuration, which
configures the sensor to turn on the
LED with ID co2_alarm when the CO,
value exceeds 1,000ppm and turns it off
when the CO, value drops below
1,000ppm. Your CO, alarm will now
function even without a network con-
nection. When you see the built-in LED

Listing 5: COy Sensor with LED
Alarm
output:
- platform: gpio
pin: 32

id: co2_alarm

uart:
rx_pin: 5
tx_pin: 4

baud_rate: 9600

sensor:
- platform: mhzl9
co2:
name: "MH-Z19 CO2"
id: co2_value
on_value_range:
- above: 1000
then:
- output.turn_on: co2_alarm
- below: 1000
then:
- output.turn_off: co2_alarm
temperature:
name: "MH-Z19 Temperature"

update_interval: 60s

40 MAKERSPACE

turn on, you’ll know that it is time to
open the windows for ventilation.

Adding a Display

If you want more than just an LED on
your device and prefer to see the full
sensor value, you can add a display.
ESPHome supports various display
components [16], and this example
uses an SSD1306 [17]. Start by discon-
necting power from your Raspberry Pi
Pico W and then connecting the dis-
play to your breadboard. Connect it as
follows: the VCC of the display to 3V3
Out of the Pico W, GND to GND, SDA
to GP8, and SCL to GP9 (Figure 8).
Listing 6 shows the code you need to add
to Listing 5 to show the sensor values on
the display.

The SSD1306 display uses the I12C bus
(there’s also an SPI version), so first de-
fine this bus in the ESPHome configura-
tion. If you use other pin numbers on
the Raspberry Pi Pico W, make sure to
use pins that are designated 12C0 in the
pinout, because 12C1 isn’t supported yet
by ESPHome.

Because you want to show letters
and numbers on the display, you also
need to define a font. This example
uses Roboto font size 18. The display
is now defined and uses the previously
defined 12C bus, specifying the model
and 12C address of the display. The last
line is the first real code in this article.

0000000000000 00000000000000000000000000c00d0000000d00RsBRNOOIOIROIOLARBIBOALBLBSAENS

AUTOMATION ESPHome

MQTT Broker

If you don’t use Home Assistant — or if
you prefer not to use the Home Assis-
tant APl - ESPHome also supports
communication through the MQTT
machine-to-machine messaging pro-
tocol [10]. This route requires you to
set up an MQTT broker, such as
Eclipse Mosquitto [11], running in a
Docker container or as a Home Assis-
tant add-on. Then you add an MQTT
Client Component [12] to your ES-
PHome device configuration, specify-
ing which MQTT broker to connect to,
as well as the username and password
for authentication. At this point, you
can control the switches defined in
your device by sending MQTT mes-
sages to your broker, and you can sub-
scribe to MQTT messages from the
sensors defined in your device.

This 1ambda is C++ code integrated in
your ESPHome configuration. Al-
though most ESPHome configurations
can be defined without programming,
displays are one of the few compo-
nents that require code.

In this example, the one-liner calls
the printf method on the display, spec-
ifying the horizontal and vertical coor-
dinates in which to place the text, the
id of the font, the string template to
display, and the state you want to dis-
play. The value is obtained by referring

Figure 8: On a real breadboard, a circuit always looks messier thanin a
diagram.

MAKERSPACE-MAGAZINE.COM

fSooscemneseNOOROERNOOOINOROSONNOSIOENOOORNROIOSOORNONSEONOOONONOONRNOOSONOOORNOOIOOORNOOOOROROONOOODYS

ESPHome AUTOMATION

to the ID of the CO, sensor and getting
its state property:

id(co2_value).state

Because this is a floating-point number
(e.g., 1746.00), the %.8f pattern shows
only the integer part (i.e., 1746).

Complex Devices

The full YAML file of this CO, sensor
device isn’t very long, but you can cre-
ate much more complex configurations.
For example, I created an ESPHome air
quality monitor [18] that combines a
CO, sensor with a particulate matter
(PM) sensor, temperature-humidity-
pressure sensor, and display. I’ve also
created an ESPHome configuration for
the M5Stack PM2.5 air quality kit [19],
as well as an ESPHome heart rate dis-
play [20] showing heart rate from a
Bluetooth Low Energy (BLE) heart rate
sensor on a display.

Finally, if you want to learn more
about ESPHome and explore various
examples to create your own home au-
tomation devices, read my book on the
topic [21]. mmm

Author

Koen Vervloesem has

been writing about

Linux and open

source, computer se-

curity, privacy, pro-

gramming, artificial

intelligence, and the Internet of Things for
more than 20 years. You can find more on
his website at koen.vervioesem.eu.

Listing 6: Display Showing [CO3]
iac:
sda: 8
scl: 9

font:
- file: "gfonts://Roboto@medium"
id: font_roboto

size: 18

display:

- platform: ssdl306_i2c
model: "SSD1306 128x64"
address: 0x3C
lambda: |-

it.print£(0, 23, id(font_roboto), "CO2: %.0f ppm", id(co2_value).state);

Info

[1] ESPHome: https://esphome.io

[2] Arduino: https:;//www.arduino.cc

[3]1 MicroPython: https:/micropython.org

[4] Shelly: https://shelly.cloud

[5] Sonoff: https://sonoff.tech

[6] ESPHome devices:
https://devices.esphome.io

[71 ESPHome Docker image:
https://esphome.io/guides/getting_
started_command_line.html#
installation

[8] Home Assistant: hitps:/
home-assistant.io

[9] YAML: https://yaml.org

[10]1MQTT: https:;//mqtt.org

[11]Eclipse Mosquitto:
https://mosquitto.org

[121MQTT Client Component:
https://esphome.io/components/mqtt.
html

[13]ESPHome sensor components:
https://esphome.io/index.html#
sensor-components

[14]ESPHome MH-Z19 sensor: https:/
esphome.io/components/sensor/
mhz19.html

[15]1Raspberry Pi Pico W pinout:
https://picow.pinout.xyz

[16]ESPHome display components:
https://esphome.io/index.html#
display-components

[171ESPHome SSD1306 display:
https://esphome.io/components/
display/ssd1306.htm|

[18]ESPHome air quality monitor:
https:/github.com/koenvervioesem/
ESPHome-Air-Quality-Monitor

[19] Config for M5Stack PM2.5 air quality
kit: https:/github.com/koenvervioesem/
M5Stack-Air-Quality-ESPHome

[20]ESPHome heart rate display:
https://github.com/koenvervioesem/
ESPHome-Heart-Rate-Display

[21] Vervloesem, Koen. Getting Started
with ESPHome. Elektor International
Media B.V., 2021, https://www.elektor.
com/getting-started-with-esphome

MAKERSPACE-MAGAZINE.COM

MAKERSPACE 41

0000000000000 0000000000000000c000000d0000coodo0tOORBOSORNOSIOONOOIOIROIOOLABIBADS

AUTOMATION Greenhouse Control

Manage your greenhouse with
a Raspberry Pi Pico W

Sheltered
Growth

You can safely assign some greenhouse tasks to
a Raspberry Pi Pico W, such as controlling
ventilation, automating a heater, and opening

AXEEREENENEEERENEESNEERERESENERENRZSE:RHSEH;RHSEHNRHERH}:;

42

and cIosing windows. By Swen Hopfe

hen implementing my
greenhouse control system,
I didn’t have to start com-
pletely from scratch. An
older control system already existed with
which I had a little experience. Building
on this established setup, I decided to
use power windows for the hinged sky-
lights (Figure 1) and a fan to circulate
the air in the greenhouse. Also, when
nighttime temperatures dropped in the
spring and fall, I wanted a heater to

MAKERSPACE

Figure 1: The automatic greenhouse control system regulates when
the skylights open and close.

switch on automatically. In contrast,
crops needed protection against exces-
sive heat in summer.

An intelligent control system would
also be nice to reference the outside tem-
perature, allowing it to close the win-
dows in time for cool evenings and build
up a heat reserve for young crops during
the night. At the same time, a reliable
clock was essential to adapt to the light-
ing conditions of different seasons.

All functions should be remotely ac-
cessible, with the option to intervene
over the web if thresholds were ex-
ceeded. Another requirement was an ac-
tivity log to collect messages from ongo-
ing operations for remote viewing with-
out always having to check the display
in the greenhouse. To implement all of
this, I used a Raspberry Pi Pico W. In ad-
dition to the essential peripheral devices,
it now provides the entire logic and a
web server.

Getting Started

Unlike the single-board computers from
the Raspberry Pi family, the Pico re-
quires very little preparation. I used the
WiFi version because the controller
could not be managed remotely without
a connection to the home WiFi network.
I also needed a USB port for the pro-
gramming. In the development phase,
you need to feed the commands exter-
nally from the special Python Thonny in-
tegrated development environment (IDE)

MAKERSPACE-MAGAZINE.COM

Lead Image © Ledda Maria Rita, 123RF.com

ieoemnenaNOeROERNOSOIOROOINOIOENOONROIOORNONSEONOONONIOSONRNOOSONONOORNONOOORNOOOORONRONOOODYS

Parts List

» Raspberry Pi Pico W

» LCD panel with 12C controller

» DS1307 real-time clock with AT24C32N
EEPROM

» DS18B20 temperature sensor

» 12V electric window lifters (2)

* 6x relay board

* LED board

» Transistors, resistors

» 5V and 12V supply (for top-hat rail)

« Automatic circuit breaker (for top-hat rail)

« Various empty housings (for DIN rail)

* Housing (fuse box)

» Wiring, installation material

to the controller, and to finish the job,
you need to transfer your code to the
module permanently.

One advantage of microcontrollers
over computers with filesystems is their
robustness, with no risk of the SD card
or hard drive being damaged by a power
failure. You do not need to shut down
your controller in a defined way before-
hand when switching it off and can in-
stead simply press the power switch. In
return, you have to make do with fewer
resources and without a battery-buffered
real-time clock in the case of the Pico.
Luckily, this restriction did not matter
for my control system, because I de-
signed in a real-time clock (RTC) to ex-
change information with a time server
on the Internet. The project also had
electrically erasable programmable
read-only memory (EEPROM) to store
the latest setting values.

Setup

The LCD display and the RTC are con-
nected to Pico over an I2C bus and the
temperature sensors over a 1-Wire bus.
The transistors are connected upstream
of the LEDs that occupy three ports. To
allow the Pico to control the large con-
sumers such as the window lifters and
heater (230V), a relay board with six in-
puts was also controlled by the Rasp-
berry Pi GPIOs. In this use case, the Pico
sits in a housing and on its own small
circuit board. All other components (see
the “Parts List” box) were connected by
plug connectors and put in a DIN top-hat
rail housing (Figure 2). The idea was to
keep things manageable for any service

MAKERSPACE-MAGAZINE.COM

Greenhouse Control AUTOMATION

board by plug connectors.

work and to be able to disconnect all the
components easily.

A 5V power supply powers the entire
circuitry, and 12V is required for the win-
dow motors. In case of activity, the cur-
rent there needs to be relatively high. To
avoid the power supply being constantly
idle, and to remove the need for DC/DC
converters, the 12V motor power supply
is only switched on with a relay when
needed. Most of the time, I make do with
a frugal SV circuit to save money.

Most of the hardware is housed in a
prefabricated enclosure - a fuse box with

Figure 2: The components in this setup are connected to the Pico

A

a weatherproof seal (Figure 3). I wanted
to take advantage of a DIN top-hat rail
housing to be able to arrange and ex-
change individual modules easily side by
side. Whatever didn’t fit beside the circuit
breaker and power supply units was lo-
cated in empty housings for the top-hat
rail (e.g., LCD display, switches, and
LED). Enough space was left in their
housings to install the Pi, the relay board,
and the rest of the electronics closer to the
rear, resulting in an uncluttered front side.
I then routed the wires out to the lift
motors, fan, heater, door contact,

Figure 3: All components are mounted on DIN top-hat rails in a weather-
proof housing.

MAKERSPACE 43

o000 OOOSSONOOONOOSOONNOIOONOLOIORDGE

AUTOMATION Greenhouse Control

temperature sensors, and network con-
nection through the enclosure, making
sure that everything was watertight.
All of the outdoor wires first were
routed to clamp connectors on the in-
side so the control and switch enclo-
sure could be tested separately from
the rest of the external installation and
be easily assembled.

Control

If you take a look at the few alterna-
tives available for purchase, you’ll
quickly discover that various control-
lers are often limited to thermostats
only and are difficult to expand. How-
ever, I wanted to use my own accesso-
ries and be able to program everything.

ect/2023/greenhouse2/github/gw2_pico.py

File Edit

¥+ H

View Run Tools

OB

Help

efl = False

Values stored in EEPROM

mot_duration = 30 # Runtime,

t_win_f_open 30.
t_win_f_close 22,

t_win_s_open 324
t_win_s_close 24.

#

#

#

#

t_win_h_open 5 #
t_win_h_close 5 #
#

#

#

#

#

t_wcut_close

t_heat_off
t_heat_on

Heat off
Heat on

t_vc_on
t_vc_off

A value greater than that required may be set because the window lifters have
For safety reasons, though, a value just below

Upper temperature to
Lower temperature to

Upper temperature to
Lower temperature to

Upper temperature to
Lower temperature to

Closing windows because of the outside temperatui

Fan on with the skylight (door) closed
Fan off with the skylight (door) closed

To operate the solution, I use a central
control script main.py in the usual style
for the Pico and added methods for the
LCD controller and DS1307 chip to the
source code.

Development occurred in the Python
Thonny IDE (Figure 4), which integrates
the Pico seamlessly. MicroPython was
the programming language of choice. If
you have a device without MicroPython,
you first need to take care of loading the
latest firmware. Numerous workable
how-tos for this step can be found on the
Internet.

After applying the operating voltage,
the Raspberry Pi initially checks to see
whether all of the components are in
place and whether all of the peripherals

@ 2322:1 -

window lifter (sec)

the switch-off limit is current

open the window (spring)
close the window (spring)

open the window (summer)
close the window (summer)

open the window (autul
close the window (autumn)

Connected to 192.168.178.71.
Set up web server...

Initializing real-time clock...
Season spring (3-5) determined.
...real-time clock set.

Initializing EEPROM...

Read EEPROM...

...2 of 2 found.
1W sensors - OK.
Runlevel reached.

[1]

GHouse-RTC: ..

Window:0 Fan:0 Heat:0 Door:1
Inside temp: 21.5

Outside temp: 21.5

Scanning for temp sensors on 1-Wire bus...

v
MicroPython (Raspberry Pi Pico) « /dev/ttyACMO

Figure 4: The Python Thonny IDE wa
controller.

44

s used to develop the code for the

can be accessed by I2C or the 1-Wire
bus. If this is the case, the system can
be fired up. In the case of less serious
events, such as a missing Internet con-
nection or an inaccessible time server,
the system continues and tries to es-
tablish contact at a later time. After
that, the Pico lowers the windows to
the stop position to adjust the zero
points in case the windows were open.
The window lifters have internal stop
switches, so I didn’t have to connect
anything to the Pi.

The current operating values are que-
ried in an infinite loop and checked for
the designated upper and lower limits
for switching the actuators, followed by
appropriate actions. The system is really
smart in this way because a variety of in-
door and outdoor conditions play a role.
For example, knowing whether the ac-
cess door is open or closed is important
for ventilation, and different switching
values for everything depend on the time
of year because climate parameters such
as insolation will vary. The controller
also provides different hystereses de-
pending on the time of day, to avoid re-
peated switching. In the evening, for
example, the windows are kept closed
longer to store some heat for the night.

The script is also responsible for dis-
playing the current values on the LCD
display of the control panel on the outer
wall and for writing logs, which you
view in the web app. Scheduled actions
are reported in the message log, as well
as exceptions into a separate error log,
such as a sensor failure or exceeding
maximum or minimum temperature lim-
its, because errors and warnings are re-
tained for a longer period of time. At the
end of the day, then, you can find out
what has been going on with a quick
check of the app or the LCD display.

The corresponding switching values
are defined as constants in the source
code by default. If required, the con-
stants can be customized later in the
EEPROM, which you can also write to
from the web app. For the app to work at
all, the script keeps trying to reconnect
at regular intervals after a connection
loss. The exact time is also resynchro-
nized regularly. In general, the Rasp-
berry Pi’s MicroPython interpreter
should never stop, if possible; you want
it to keep things under control whatever
else happens.

Ieoe0hesaNOeRNOERNOSOIAOROONNOIONOOIRNROIOORNONSEONOOONONIOSONRNOSONONOORNONOOORNOOOORONRONOSOODYS

I worked with the uasyncio library to
allow ongoing operations and web inter-
face updates to take place in parallel.
The library provides an asynchronous
scheduler that assigns application time
to both tasks, which makes it a great
choice for this use case: to ensure
smooth operations (short response time
after pressing a button in the web inter-
face) on the one hand and smooth pro-
cessing of the program (avoiding long
waits for requests from the web server)
on the other.

Of course, you also want to be able to
control all of the functions manually as
an alternative. For this to happen, a mul-
tipole switch disconnects the actuators
from the control system so that each of
the two windows can then be set to the
desired position without conflicting with
the automatic system, and the fan and
heater can be set. The LCD display back-
lighting also is manually switched on to
make it easier to read in the evenings.

Web-Based Remote Control
The control system works reliably of-
fline, but in my opinion, remote

Greenhouse

Window

Inside Min/Max

20.8

Window

dow DOWN

[Aulo ACTIVE]

[Fan SET OFF

a bit spartan.

MAKERSPACE-MAGAZINE.COM

Auto ACTIVE ‘

Figure 5: Thanks to a user interface provided by
the web server, it's fine for the control panel to be

web-app-based access (Figure 5) is a
great idea because it avoids the need to
check everything manually onsite.
Also, it means you do not have to
make the control panel on the green-
house too fancy. In support, the Pico
can run a web server, which then gives
you a user interface (Figure 5). If so
desired, you can additionally share the
interface on the Internet, but in this
case, it can only be accessed on the
local network.

The app’s functions are:

Immediate display of the current values
Minimum/maximum temperatures
and assessment of the operating status
e Manual switching of windows, fan,
and heater

Resetting variables to automatic control
Displaying and deleting messages and
error logs

Daily and monthly charts of indoor/
outdoor temperatures

Reading and writing control parame-
ters from and to memory

Because the Pico is always within range
of my home WiFi network, I have the sit-
uation in the greenhouse constantly
under control and
can intervene by
smartphone, tab-
let, or PC from the
garden or
apartment.

Conclusions
The greenhouse
is in constant use
from April to Oc-
tober. Accord-
ingly, I want the
electronic control

CLOSED

Qutside

20.8

Greenhouse Control AUTOMATION

system to be not only functional, but
above all reliable in terms of operation.
To protect the crops, it is advisable in a
project like this to test everything thor-
oughly, module by module, up front
before putting anything into operation.
Once you have installed the system
outside, it can be difficult to access the
individual components.

The new controller has been running
for some time now and has demonstra-
bly been a valuable asset in the green-
house thus far (Figure 6). It is reassur-
ing to know that everything is well
taken care of in my absence. Sometimes
it’s the little things that matter, like the
LED lights that let you know whether
everything is OK as you walk past the
greenhouse. In the next stage of expan-
sion, I want to add moisture sensors so
that I can also monitor the soil. You will
find the software and full details of the
project online [1], as well as on my
GitHub site [2]. mmm

Info

[1]1 Greenhouse project (in English):
https:/linuxnewmedia.thegood.
cloud/s/XnzsiEKtagjHKr3

[2]1 Greenhouse project (original code in
German):
https://github.com/swenae/ghouse

Author

Swen Hopfe works for a medium-sized
company with a focus on smart cards and
near-field communication (NFC). When he
is not taking photos, in the great outdoors
or in his garden, he focuses on topics such
as the Raspberry Pi, Internet of Things,
and home automation.

Heat ON

MAKERSPACE 45

AUTOMATION

000000 O0OCOOSONOOOIOOICGRORONOOOOROOSOODAS

46 MAK

sG00OOGOONOOONOLOONONOSIOONONOOROOONAOGIOOETS

Home

By Erik Barwaldt

ew technologies and new pro-
viders are constantly expand-
ing the range of potential
smart home applications.
Solutions from various manufacturers are
often mutually incompatible, which
means customers cannot leverage the full
potential of home automation services.

But there is another approach. Zigbee
is a protocol for low-power wireless com-
munication based on the IEEE 802.15.4
standard. The Zigbee protocol is often
used for home automation devices. Dres-
den elektronik [1] has been working on
light control systems based on the Zigbee
protocol for some 10 years and now offers
numerous vendor-agnostic systems for
the smart home. The company also dis-
tributes the RaspBee module for home
automation with a Raspberry Pi. A Rasp-
Bee device with the accompanying soft-
ware can help you reap the benefits of the
smart home without expensive gateways
and cloud connections.

The RaspBee module, which has al-
ready reached its second generation, is a
piece of hardware attached on top of a
Raspberry Pi (called a HAT) that helps
users convert the system into a control
center for smart home devices such as
lights, alarms, or smart sockets and
switches. The RaspBee Il module [2] sup-
ports devices from various manufacturers
with home automation solutions based
on the Zigbee protocol. The underlying
technology is a framework for wireless
networks that are especially suitable for
home automation due to their low data
volume and low energy requirements.

Control your smart home with
RaspBee II and your Raspberry Pi

Manager

The RaspBee Il module turns your Raspberry Pi
into a smart control center for Zigbee devices.

The modular Zigbee protocol supports
extensions, and some manufacturers try
to boost customer loyalty by adding new
functions that lead to incompatibility with
devices by other providers, thus prevent-
ing users from switching. The Zigbee II
module takes this into account by having
the developers test components from a
wide range of vendors and add them to
continually updated compatibility lists [3].

The latest RaspBee module is far more
compact compared with the first-genera-
tion model (Figure 1), and it also comes
with an important innovation. Thanks to a
battery-buffered RTC on the HAT, the sys-
tem is now able to sync with the Rasp-
berry Pi control center after a power failure
to carry out time-critical tasks. According
to the manufacturer, the battery should
last for at least two years and will provide
power for up to eight years if the system is
used daily. It is a replaceable button cell.

In addition, the RaspBee II module
comes with a power amplifier that gives
users an effective range of 30 meters in-
side buildings. Outdoors, a range of up
to 200 meters should be possible. Be-
cause Zigbee installations act as a mesh
network, where devices such as lights or
smart sockets play the role of repeaters,
you can easily extend the range without
additional hardware.

RaspBee HATs are supported by two
software packages. You can use the de-
CONZ platform to configure the hardware.
The graphical tool visualizes Zigbee net-
works, to which you can add devices from
different vendors. deCONZ runs in the
background during this process. The

Lead Image © Pavel Shlykov, 123RF.com

Gonesasoens RSSO ROONOIOENOOINROOORNOIOSEONOOONONOSONROOSONOOORNONOOORNOOOORONROONOOODYS

RaspBee 7

L] "'
OF',A,.;con
e 39 e |
® @09 4 0

RTCbatery . +_|

337/5RA165W

Figure 1: The Zigbee Il module (left)
has shrunk considerably compared with

its predecessor (right).

second component is the Phoscon app,
which is also graphical and browser-based.
Phoscon acts as a graphical front end for
controlling lighting installations [4].

Installation
Get started by simply plugging the Rasp-
Bee Il module onto the pin header of the
Raspberry Pi - on the side facing the slot
for the MicroSD card (Figure 2). The
module supports all versions of the Rasp-
berry Pi, so you can use an older model
for home automation. You need a current
version of Raspbian “Buster” or Pi OS
“Bullseye” as the operating system.

The Raspbee manu-

also suitable for the first generation
RaspBee module.

The images with the desktop environ-
ment each weigh in at just shy of 880MB,
while the headless image without the
graphical environment only takes up
395MB. The provider recommends using a
fast MicroSD card with a minimum capac-
ity of 8GB for all images. It should at least
meet the Class 10 standard to avoid laten-
cies during operation [5]. Alternatively,
check out the vendor’s website, where you
will find detailed instructions for integrat-
ing the software packages required for the
RaspBee Il module with conventional

RaspBee 1L

® & o
D b icon
L J ?

EIN

« s o 0o 0 0
RTC battery
337/SRAT6SW

¥ cr

o R - ‘

!

- -

Figure 2: The Zigbee Il module is plugged into the end of the
Raspberry Pi’s pin rail.

Pi-OS images [6]. If you decide to use the
preconfigured images, a system update
and the deCONZ configuration software
will launch automatically. In the graphical
network representation in the deCONZ
control interface, you will initially only see
the existing gateway (Figure 3).

Then, working on any machine on the
local network, open a web browser and
type http://RaspPi_IP_address:80 as the
target address. After a short startup delay,
the browser window displays the gateway.
Clicking on the gateway icon takes you to
a configuration dialog where you can set a
password for logging into the gateway.

deCONZ - RaspBee (/dev/ttyAMAD) v oA X

facturer offers a total of Fle. §dt Panels Phugins Help
four different images for = [Leave Network i L Nelghbor Links 6Nodes | Phoscon App| WebApp

. Node infc s b -
MicroSD cards. These g
images contain a cus- :.;m 0x00212¢ff10a4e43

- . e A i
tomized Raspbian T tor
“Buster” on which the :g‘mﬁs ' i
. . . Fi Band 2400 - 2482.5 M
deCONZ application is User Descipor e n
Complex Descriptor false

preinstalled. One of the
images already has the
Homebridge Hue plug-
in, which you can use
to control components
of the Philips Hue light-
ing system. The images
all have the Raspbian
working environment,
except for one, so you
can conveniently run
the configuration graph-
ically. All images are

Manufacturer Code
Max Buffer Size mn
Max Incoming Transfer Size 43
Max Outgoing Transfer Size 4

MAC Capabilities Oxde
Alternate PAN Coordinator false
Device Type)
Power Sou Mains
Receiver On When Idie true
Secunty Support talse
Server Mask 00040
Primary Trust Center false
Backup Trust Centes false

Primary Binding Table Cache false
Rackup Binding Table Cache false
Primary Discovery Cache false
Backup Discovery Cache false
Network Manager true
Descriptor Capabilities

Extended Active Endpoint List false

Extended Simple Descriptor List false
| _Power D Iﬁm

Node Info Cluster info

0x0000
00212EFFFFOA4E43

.

v2.19.3

Figure 3: The main section of deCONZ shows you the gateway.

MAKERSPACE-MAGAZINE.COM

MAKERSPACE

47

into the gateway (Figure 4).

The routine prompts you to turn on all
the lights you want to integrate with the
Zigbee network. But before doing so, you
have to reset the lights to the factory de-
faults, otherwise the RaspBee module will
be unable to identify the components.
Dresden elektronik supplies instructions

for resetting lighting by
various home automation
manufacturers.

After you switch on the
lights, deCONZ searches
for them and lists them.
The software then auto-
matically draws connect-
ing lines from the gateway
to each device to outline
the mesh network (Figure
5). The identified compo-
nents appear in a table in
the browser window of
the Phoscon app. Click on
one of the devices in de-
CONZ to display its tech-
nical data in a vertical
pane on the left.

Because deCONZ is
vendor-independent, you
can add Zigbee-compati-
ble devices from different
manufacturers to your
smart home setup. But be-
fore purchasing individual
components, it makes
sense to take a look at the
compatibility list provided
by the vendor to make
sure your choice of device
actually works with the
RaspBee II system.

Grouping
Once all devices are
logged onto the gateway,
click Mainpage in the
Phoscon app browser
window. Then proceed to
create an initial group in
an overlapping dialog
box. Groups are typically
used to designate differ-
ent rooms with smart
home components in the
Phoscon app.

After clicking Create first
group, go on to define the
group name in a separate

48 MAKERSPACE

0000000000000 000000000600000000000000000c00d0000000d00bsROOOIROIOLARLBIBLALLYS

AUTOMATION Smart Home with Zigbee

After that, future settings require logging

dialog box. The app makes suggestions
for a group name. After you Create the
new group, you are taken to the dialog for
assigning the identified components. If
you click on the gear icon in the bottom
right, you will come across the Manage
lights option. In the Available lights dia-
log that appears, you need to add the
desired components to the group.

Be careful: Some components, such as
intermediate switches that integrate a
conventional device into the smart
home, are also identified by the software
as lights and listed accordingly. Luckily,
meaningful symbols to the left of the in-
dividual nodes reveal whether the device
is a light source or some other device.
Use the plus sign to the right of each

- o Phoscon App - Login - Mozila Frefox r & &

Phoscon-GW

Figure 4: When you launch the Phoscon app, you initially see only the gateway.

JeCONZ - Raspliee (/dev/TttyAMAQ)

e EOt Panels Pugns Help

L | Lave — 1] Lol Neighbor Links EMNodes Phoscon dop| Webdpp
Pade ke T o
Name ON0021264MMM0nded On/Off plug-in unit 4
ot e 84182600000E7EDS
Type Coordnator
MAC Address a0 1 JeffiOaded
._1“’51“‘&—'“ Q0000
o oo : Dimmable light 3
o scpene e 0017880104108068
Mantacturer Code oaiss .
Max Bt

er Sze 7 ~
Max ncomeng Transfer Sae 43 :
Max Outgorsy Transher Size 43

MAC Capatsities oxte Dimmable light 2
Alternate PAN Coordinator false.
Device Type #FD 0017880104108381
Pomer Saurce Mains
Recerver On When Idle troe
Security Support taise
OxD040

imary Trust Ceeset iaise
Backis Trust Center faise 0x0000
Primary Binding Table Cache fake
Backup Bindieg Table Cache fake O0212EFFFFRA4EA3

’ very Cache false

Discovery Cache false
Network Manager true
n

c ties
Extinded Actw Endpoint List aise

ﬁm Simple W'ﬁ List faise

Y Dimmable light 1
001788010B30AE2F

@ Switch 2
001788010B769D58

Node info | Chuster info

Figure 5: deCONZ draws connecting lines to outline the mesh network.

Phoscon App - Chiomium

Phoscon-GW

Living Room

29 Available Lights
€¢ Connoct Now Lights -9
Lights that can be assigned

Lights in the Grou,
LA & =) On/Offplug-inunit1 P
Group membership changed.

Delete Save

Q Dimmable light 2 =

Figure 6: You can see the group members and add new ones in a graphical interface.

MAKERSPACE-MAGAZINE.COM

GoossenneRaNOORNOERNOSOIOROONNOIOSENOOIRNROOOORNONOSEONOOONONINOONRNOOSONONOORNONOOOROOOORONROONOOODYS

Smart Home with Zighee AUTOMATION

device to transfer it to the
vertical group column on the
left. Don’t forget to Save your

PRoscon App - Chromium

(=) Phoscon App x|+

€3¢ awn

phoscon de

work after adding all the de- 4 Living Room
sired components to the &) Sleep o
group (Figure 6). ¥
Control Lights ey
Making a scene P) v Dimmable light 2 Ry
In the next step, you add -
what are known as scenes to
the installation and then con-
figure the individual nodes in
each scene. For example, you
can turn switches or lamps Q
on and off using timer con- i ki
trols or dim the lights in the Figure 7: The scene editor lets you control the devices individually.
scene editor.
The Scenes editor option lets you open of the fade time before starting the Info
the scene dialog, where you need to timer (Figure 8). [1] dresden elektronik:
click on Add Scene and assign a mean- You need to repeat this procedure for https://www.dresden-elektronik.com
ingful name. After clicking Create, you each room in which you have Zigbee [8] BuspBes (| mudle:
can configure and save the desired set- network components. When you are https://jphoscon.de/en/raspbee2
tings as a function of the options sup- done, you can enjoy reliable automated o
i X . [3] Compeatibility lists: https:/phoscon.de/
ported by the enabled device (Figure 7). control of your home devices. .
i en/conbee2/compatible
If you now switch back to the Groups
menu, you can use the Schedules dialog Conclusions [4] Software descriptions: hitps://
to define when you want the tool to en- The RaspBee Il module makes it easy to phoscon.defenrasphesi/soionats
able a specific scene in the current manage devices supporting the Zigbee [5] Downloads: https://phoscon.de/en/
group. Schedules | Actions lets you set protocol. The Raspbee II's control software raspbeeZ/sdcard
an alarm or a timer, to which you can is very flexible - you can even use it on re- [6] How-tos:
assign a name. mote machines via VNC, and the accom- https://phoscon.de/en/raspbee2/install
Following the Create step, you will panying software supports most of the
find yourself in the configuration dialog Zigbee devices on the market. You can Author
for timer control. Just a few mouse even integrate older systems without any Erik Barwaldt has been working as an
clicks let you define which scene is manual configuration, provided the de- IT consultant for several decades and
linked to which action and at what vices are not burdened with incompatibili- contributes to many IT magazines and
time. You can also specify the length ties caused by proprietary extensions. BEE websites.
Phoscon App - Chromium v a X
(=) Phoscon App x| + (-]
€ > C A nNotsafe | phcu;:un.de pw = t B A 2)
— Phoscon-GW.
& {@ Living Room
Group Time 4 &3 Delete Time Control
Controls
< Timer
Fade time starts in
@ Turn Off Group o
Call Up Scene |0 0 3 0
I Sleep h
m

Fade time of the scene 1 second

Start Timer

Figure 8: The timer lets you automate the control of individual devices.

MAKERSPACE-MAGAZINE.COM MAKERSPACE 49

AUTOMATION

000000 OGOOOOIGONDNOIGOONIOOOANDOSEONOIONAENODS

50

MAKERSPACE

esse

ome automation offers many

opportunities, but equally

harbors many risks. If you

succeed in becoming inde-
pendent of commercial products, you
can save money while retaining control
over what data flows where. In this
case, the Message Queuing Telemetry
Transport (MQTT) protocol proves to
be very useful.

A previous article on Z-Wave [1]
showed how you can bring the Rasp-
berry Pi up to speed with Home Assis-
tant and components available on the
market to attain the goal of achieving
automation magic in your home with-
out human interference. Plenty of com-
ponents can be addressed by Home As-
sistant, even without the cloud. The
only limits are your wallet and your
imagination.

This sequel explains how you tweak
both the price and the DIY factors of
the components. The Raspberry Pi
from model 3 onward comes with a
wireless interface that is also available
in many microcontroller modules and
is likely to open many doors. The glue
that connects the whole thing to the
Home Assistant environment looked at
in the previous article is an IP-capable
protocol that saw the light of day long
before any Internet of Things (IoT)
hype did: MQTT.

o00GNOOOOROONONOIOOOOOOS

Home Assistant controls
microcontrollers over MQTT

Home Sweet
Home

Automating your four walls does not necessarily
require commercial solutions. With a little skill,
you can develop your own projects on a low
budget. By Gerhard Schauer

The MQTT protocol was introduced in
1999 and is a text-based protocol that runs
over TCP on any IP network. Transport
Layer Security (TLS) can optionally be
used for encryption. The sensors and actu-
ators communicate as clients with the bro-
ker, which acts as the communications
hub. Addressing relies on what are known
as “topics.” Transmitters are referred to as
publishers, and receivers as subscribers.

Testing MQTT

To implement the protocol on the Rasp-
berry Pi, you first need the mosquitto
package. For the small implementation
tests that follow, you will also need the
matching client. You can set up both
components on the Raspberry Pi with
the commands:

$ sudo apt-get install mosquitto
$ apt-get mosquitto-clients

If the broker is running after the install,
you can log in to the individual topics
with the client and retrieve a list of top-
ics with a command-line call that speci-
fies the host on which the broker is run-
ning with the -h option:

$ mosquitto_sub -h localhost -t "#"

In this case, it is localhost. For exam-
ple, to send the value 10 to a topic

MAKERSPACE-MAGAZINE.COM

Lead Image © shamain, 123RF.com

AR R R R EREEEEEEEEREEEE R EEEE N R EERENE RSN EEERE AN EE A N RN NN SN RN EERNNNRENNN N

Home Assistant with MQTT AUTOMATION

named test/testl and receive the value
as a subscriber, you would use the
commands:

o

mosquitto_pub -V mgttv3il 2
-h 192.168.3.7 -t test/testl -m 10

o

mosquitto_sub -h 192.168.3.7 2
-t test/testl

For a more practical example, I'll use
MQTT to transfer the measured values
of a one-wire temperature sensor of the
DS18x20 type connected to a Raspberry
Pi to the broker listening on another
Raspberry Pi. To do this, you need to
enable one-wire support up front with

dtoverlay=wl-gpio

in the /boot/config. txt file.

After connecting the sensor to the
standard one-wire GPIO port, the tem-
perature values can be queried as four-
digit integers in /sys/bus/ul/
devices/28-0417ciblf7ff/ul_slave. The
value 28-0417c1bif7ff is the unique ID
of the sensor on the bus. The complete
command sequence is:

o

mosquitto_pub -h 192.168.3.7 2
-t wohn/temp/28-0417c1blf7ff 2

-m $value

o

mosquitto_sub -h localhost 2
-t wohn/temp/28-0417c1blf7ff

To transfer the values to the Home Assis-
tant environment, you need to enter the
broker you are using in the configura-
tion.yaml file; in this case, it is running
on the same host (Listing 1, lines 1-2).
The entries in the lines that follow take
care of subscribing to the appropriate
topic and fielding the sensor data in
Home Assistant; the last line also speci-
fies degrees Celsius as the unit.

ESP8266 Controller

The theoretical side is now covered, but to
use a separate Raspberry Pi for each re-
mote actuator or sensor seems a little un-
realistic in practice. The ESP8266 control-
ler will come in handy here. On the one
hand, you can source low-priced and use-
ful developer boards that use this control-
ler; on the other hand, the chip is used in
various products from the Far East, and
you can take control of many of these sim-
ply by flashing them with freely available
firmware.

~E NACATZINE AN
E-MAGAZINE.COM

)

Figure 1: The Sonoff Basic WiFi smart switch with temperature
sensor.

For the tests here, I used a Sonoff
Basic WiFi smart switch [2] (Figure 1).
This controllable relay switch has a
screw connection for a 220V mains sup-
ply with switchable output.

CAUTION: There is a
danger to life if this hard-
ware is not used correctly.
In this article, I am restrict-

existing GPIO ports of the controller,
such as the temperature sensor I re-
ferred to earlier. Tasmota uses MQTT
to transmit the data from the sensors.

Listing 1: configuration.yaml
01 mgtt:

02 broker: localhost

ing the supply voltage to the 03
module to 3.3V. DL EEeEs
The firmware is Tas- 05 - platform: mgtt
mota. The software lets 06 name: templ
you configure a variety of 07 state_topic: "living/temp/28-0417clblf7ff"
supported sensors and 08 unit_of_measurement: '°C'

components on the

Raspberrypi GPIO
+3.3V : 2~
3 4
— —
5]
—
GND
i, |
—
TX P14
9 10 4
o , RXPIS o -
— —= > >
13 14 RX
— —= 1
15 16 vy
— —a Tasmota Basic
17 18
— —
19 20
— —
21 2
o — —-

Figure 2: Wiring the Sonoff Basic to the Raspberry Pi.

I‘ I AKFRSPACF
VIAKERDST

51

Sonoff Basic Module
Tasmota

Module parameters

Module type (Sonoff Basic)
Sonoff Basic (1)

GPIO1

GPIO2 None
GPIO3 DS18x20
GPIO4

GPIO14

Configuration

Figure 3: A convenient web GUI
helps you set up the temperature
sensor.

Flashing Tasmota

Among the several ways to flash Tas-
mota, one popular approach is to use a
USB serial adapter. A description can be
found on the Getting Started page of the
project [3]. Because the Raspberry Pi
comes with a serial interface, I will do
the flashing directly through the GPIO.

Other parameters

Template
{"NAME":"Generic","GPIO":[1,1,1,1,1

B Activate

Web Admin Password .

MQTT enable

Device Name (Tasmota)

Friendly Name 1 (Tasmota)
Tasmota

Emulation

O None

® Beikin WeMo single device
. Hue Bridge multi device

Configuration

Figure 4: Just a few parameters
let you prepare Tasmota for trans-
ferring data to Home Assistant.

The wiring required for this is shown in
Figures 1 and 2. The esptool.py utility
from the PiOS repository provides the
software.

The Tasmota firmware, along with a
massive collection of information, can
be found in the project’s GitHub repos-
itory [4]. I downloaded the sensor vari-
ant for the tests because I wanted to
integrate the temperature sensor:

$ wget -¢ 2
http://ota.tasmota.com/tasmota/?2

release-9.4.0/tasmota-sensors.bin

After connecting the module as shown,
you have to hold down the button on the
Sonoff module while powering it on; the
LED does not light up. Next, use the
command

$ esptool --port /dev/ttyAMAO chip_id

to check whether you can access the
Sonoff. An ID must be shown.

Finally, flash Tasmota with the
command:

$ esptool 2
--port /dev/ttyAMAO write_flash 2

-fm dout 0xO tasmota-sensors.bin

This operation should take about a
minute. When the module is restarted,
it reports for duty as the new WiFi ac-
cess point, which you can reach at
http://192.168.4.1 and on which you
configure the WiFi network to be used.
All further setup steps are then per-
formed with the IP address assigned by
your own WiFI network.

Setting Up Tasmota
Before proceeding, you first need to
connect the tem-

name will have already appeared in the
GUI (Figure 3).

You also need to assign a password
for the web GUI and activate MQTT
(Figure 4), which you will be using to
deliver the data to Home Assistant.
The broker and topic are configured in
the corresponding entries in the web
interface, where you will also find the
Tasmota console, which lets you issue
commands directly and set up the
parameterization.

At this point at the latest, I recom-
mend studying the very good documen-
tation from Tasmota’s GitHub reposi-
tory. For this project, I used a command
that makes the later integration with
Home Assistant by autodiscovery very
easy by telling Tasmota to announce all
available topics (setoptioni9 on). At the
end of the day, Tasmota advertises itself
in the GUI as a web switch with a tem-
perature sensor (Figure 5). You can also

Sonoff Basic Module

Tasmota

DS18B20 Temperature

OFF

Toggle

Configuration
Information
Firmware Upgrade
Console

Restart

Figure 5: Hardly distinguishable
from commercial products: the
web-based user interface of Tasmota.

perature sensor
to one of the
GPIOs used for
flashing (RX/TX),
which is now
free. You can do
this with a pull-
up resistor and
the 3.3V and GND
connections [5].
After wiring the
elements, it’s

RENAME

D

2,

CONFIGURE

time to configure
the sensor; its

Figure 6: A few simple steps are all it takes to
integrate the MQTT protocol into Home Assistant.

view the MQTT publishing in the Con-
sole, if needed.

Integration
To make the components available in
Home Assistant, you now need to set up
MQTT integration in the GUI. To do so, all
you need is the IP address and port of the
broker you are using; by default, this is set
to 1883. After the setup, the new MQTT
devices should be displayed (Figure 6).
After clicking on the entities URL, both
the switch and the temperature sensor
are shown as available Home Assistant
entities, and you can now use them in
the usual way (Figure 7). In combination
with the relay in the Sonoff module, the

familiar automation features of Home
Assistant can now be used to imple-
ment, say, a simple thermostat control.

Conclusions

The Tasmota option associated with
Home Assistant’s autodiscovery of
MQTT integration easily makes this DIY
solution as convenient as the commer-
cial counterparts described in the previous

Author

Gerhard Schauer is a self-employed elec-
tronics engineer living in the southern part
of Germany. He writes maker articles be-
cause learning by doing and maintaining
control of technology is the “right” way.

Goos0onseLNGRENOORNOIESERNOIOOINONROSOINNOSIONOOIRNROIOSORNONSOOONONIOONRNOOSONOOORNONOOOROOOORONROONOOODYS

Home Assistant with MQTT AUTOMATION

article. Homebrewing turns out to be
worthwhile - and great fun, too. mum

Info

[1] “Z-Wave Home Assistant” by Gerhard
Schauer, MakerSpace 03, 2023, pg.53,
https://linuxnewmedia.thegood.
cloud/s/XnzsiEKtagjHKr3

[2] Sonoff Basic R2 Power:
https://tasmota.github.io/docs/
devices/Sonoff-Basic/#sonoff-basic-r2

[3] Getting Started: https:/tasmota.
github.io/docs/Getting-Started/

[4] Tasmota repository:
https://tasmota.github.io

[5]1 Wiring Tasmota: https:/tasmota.
github.io/docs/DS 18x20/

Ve Developer Tools

Home

TEMP VERLAUF SURVEIL SONOFF WEB

“)> ¢ o © | & 192.168.3.7:8123/lovelace/sonoff
=< Home Assistant

B Overview HOME

B Map

= Logbook

[History

INVENT TASM

@ Tasmota DS18B20 Id 0417C1C35FFF
a Tasmota DS18B20 Temperature 209°C
¥ Tasmota Tasmota »

@ Tasmota status 86%

. @ty

SONOFF

Figure 7: Home Assistant presents the integrated sensors in a clear-cut and neat way.

MAKERSPACE-MAGAZINE.COM

MAKERSPACE 53

0000000000000 0000000000000000c000000d0000coodo0ROORBNOSOIRNOSIOONOOIOIROIOOABBLADS

RETRO COMPUTING

ZX Spectrum Next

00000000000 C¢00000000COIC0PORPIRPOCICPROCRODOOPOOOCOCROIOGOIOIONOOOTOIOOODOBEOROC

54

MAKERSPACE

G000 00CCONPPOORONIP00ROENO00CCOENOROECOENONOOIOEOEENOOOIOSEEOEEOONDONOEOEEOREOPOODOOTEOTESETRS

he Sinclair ZX Spectrum [1]
was one of the great home
computers of the 1980s: Its
first models from 1982 had a
rubber keyboard and only 16KB or 48KB
of RAM. Driven by a Z80 CPU that ran at
3.5MHz, owners would typically connect
a cassette recorder and load games from
tapes. Over the years, Sinclair made
some improvements: For example, the
ZX Spectrum + had a better keyboard,
and the culmination of the development
process was the ZX Spectrum 128K with
lots of RAM (also known as the “Toast
Rack” model). After that, Amstrad
bought Sinclair and released new Spec-
trum models with built-in cassette or
disk drives, but those machines looked
nothing like the old Speccies, and in
1992 the product line was discontinued.
That is, discontinued until 2016 when
the Spectrum was revived by a team
which included Rick Dickinson, the in-
dustrial designer who had in the past
worked on several Sinclair machines.
After some prototype work, SpecNext [2]
started a Kickstarter campaign for a Spec-
trum successor that they named “Spec-
trum Next”: The campaign ended in May
2017 with more than 3,000 backers. Dur-
ing production, the team had to overcome
many obstacles, and in February 2020

Second Edition of the FPGA-based
Sinclair ZX Spectrum Next

The Next
Spectrum

They've done it again: After the ZX Spectrum Next
development team at SpecNext ended their second
successful Kickstarter campaign in 2020, backers
had to wait until Christmas 2023 when they were
finally able to put a new 8-bit computer under the
tree. Was it worth the wait?. By Hans-Georg EBer

they started shipping the machines. The
new home computers have not only
found lots of happy users, but also
spawned a community of game develop-
ers. There are a number of excellent 8-bit
games and other software titles [3] that
you can buy for the Spectrum Next, some
of them are even available as physical
media. The DVD boxes typically contain
a booklet and an SD card that can be di-
rectly inserted into the Spectrum Next.

The SpecNext team then started a
second Kickstarter, and when the pledg-
ing period ended in September 2020,
they had attracted more than 5,000
backers. Again there were problems,
and this time the situation was even
worse than with the first Kickstarter:
The main processor was no longer
available in sufficient numbers, and so
they had to do a complete redesign and
switch to a different chip. In the end, all
problems were solved, and in December
2023 the team started shipping the sec-
ond generation of the ZX Spectrum
Next. We’re looking at one of those new
machines in this article. If you’ve
missed out on backing the project, you
might see a third Kickstarter in the near
future, and some machines will be for
sale on eBay, but you can also get a
clone or play with an emulator.

MAKERSPACE-MAGAZINE.COM

Lead Image courtesy of Hans-Georg EBer

PosemsneNeNGORNOERNOIGOOINOROOINOSIOSEONOOIRNONOIOORNONOEONONOBNONOORNOOSONONOORNONOOORNOOSOORORNONOOODYS

ZX Spectrum Next

Figure 1: The KS1 Spectrum Next (left, Issue 2B) and the KS2 (right,
Issue 4) have the same dimensions, and both get some help from a

Raspberry Pi Zero.

Spectrum Next KS2

Many backers received their Spectrum
Next just in time for Christmas - my
own machine arrived early in December.
Unpacking started with a small joke as
there was an “R Tape cutting error, 0:1 -
Do not open with a sharp instrument”
warning in the old Spectrum screen font
printed on the outer box - reminiscent of
the Spectrum’s “R Tape loading error”
message that appeared when a parity
error occurred while loading a program
from a tape.

From the outside, the KS1 (Kick-
starter 1) and KS2 models look almost
identical. If you want to quickly decide
which model you’re looking at, check
the screws: KS1 Spectrums came with
silver screws, while the KS2 machines
have black screws.

What’s Inside?

All members of the Spectrum family of
computers have used a Zilog Z80 proces-
sor, and the Spectrum Next is no differ-
ent. However, instead of a real Z80, the
Next machines contain an FPGA chip.
That’s a special kind of chip that can be
programmed in a hardware description
language and will then behave like the
chip it is asked to emulate. This is not
software emulation; an FPGA-based com-
puter exactly replicates the functionality
of classic processors, I/0 devices, and
other chips in hardware. In very simpli-
fied terms, this corresponds to emulation
at the hardware level, and there are no re-
strictions as far as parallel processing on
multiple components is concerned. That
makes this approach much better than
software emulation where concurrency
often leads to timing problems.

MAKERSPACE-MAGAZINE.COM

The KS1 Spectrum Next used a Xilinx
Spartan-6 XC6SLX16 FPGA, and that’s
the chip that was no longer available
when the second Kickstarter ended. The
team switched to another Xilinx chip, an
Artix-7 XC7A15T. The new chip is simi-
lar to the old one but a bit more
powerful.

The KS2 mainboard has been im-
proved in many ways; there is a long
video in which Mike Cadwallader de-
scribes some of the changes [4]. For
example, if a KS1 machine was con-
nected to an HDMI monitor, in some
situations it would not shut off fully
when its power was cut, because the
monitor supplied some power over the
HDMI connection. This has been re-
solved by adding an extra chip. An-
other problem with KS1 machines oc-
curred when users connected incom-
patible Amstrad joysticks which could
cause a short-circuit and reset the com-
puter. The KS2 adds a fuse that pre-
vents this reset.

0 QORE
0 860HWNE !

PAP
507
GO

cer
LGh
SPR
SPR
oIM
°1

FOR
o

RETRO COMPUTING

The main features of the new Spec-
trum Next are the same as for the KS1
model (Figure 1). The FPGA is config-
ured to provide a Z80N chip (basically a
780 with some extra instructions) that
can run at 3.5MHz, 7MHz, 14MHz, and
28MHz. Every machine comes with 2MB
of RAM, and you can connect the Spec-
trum Next to both old and new monitors
(RGB, VGA, HDMI in 50Hz and 60Hz),
plug in two classic joysticks with 9-pin
connectors, add a PS/2 mouse or key-
board, and load programs from a real
tape recorder. There’s WiFi connectivity,
so you can download files from the In-
ternet, and a Raspberry Pi Zero provides
some extra functionality such as unpack-
ing and playing back TZX archives -
TZX is a popular archive format for ZX
Spectrum software on cassettes [5]. The
machines also have an expansion bus
which is compatible with the one in the
classic Spectrum computers, so you can
use an old floppy disk controller or a ZX
Printer.

The KS2 Next has an updated BASIC
editor that displays the code with syntax
highlighting (Figure 2), and the power
cable now has a switch with Spectrum-
colored stripes that match the colors on
the keyboard.

Software

When you start the Spectrum Next and
quickly press Space, you can configure
the video mode and choose the Spectrum
model that the FPGA will emulate - this
way you can turn the machine into a
Spectrum 48K or 128K. Merely reboot-
ing the machine does not let you enter
this menu; you need to power the com-
puter off and on to get back here. In

Figure 2: The BASIC editor has learned syntax highlighting: The
screenshot in the back shows the colorless KS1 editor.

MAKERSPACE 55

0000000000000 0000000000000000¢000000d0000s0ndaRosRBOIORLDIBENLS

icH

on_ Sea

Name Area Info:none

Erowserr

AngrJyBLoaters <DIR>
basnake <DIR>
HalLLs of The Things <DIR>
Lords0FMidni ght ¢<DIR>
NextBASIC Inuaders <DIR>
NEXTipede <DIR>
Ne toid <DIR>
Night-Knight <DIR>
orb <DIR>
Pogie <DIR>
Revival Suruiuval <DIR>
Santa“s Pressie <DIR>
The Next MWar ¢<DIR>
THEH ¢<DIR>
T%- 1696 <DIR>
Warhawk <DIR>

7 °

Huide [Rinks ENT ER- SEL ect EDIT=up ERTEND more BRERK
Hrive Mopy molle Bename Erazse mEdir Mnmount reflount

The file manager is called “Browser.” This is where most

sessions start.

most cases you will want to stick with
the default settings, ZX Spectrum Next
(standard).

Next, the machine will display some
welcome screens (which you can dis-
able) and then show a menu. The first
entry, Browser, launches the file man-
ager which lets you navigate the fold-
ers on the SD card (Figure 3). Use the
cursor keys to go from one entry to an-
other and from one page to the next;
select entries with Enter, go back to the
parent directory with Edit. (Keys on
the Spectrum have interesting names,
for example, the modifier keys are called
Symbol Shift and Caps Shift, and there
is a Break key where you’d expect an
Escape key.)

Native Next programs have a .nex ex-
tension; when you select such a file, the
program will start after a few seconds. The
list of native Next programs is limited,
though it’s steadily growing. You’re not
limited to native applications, though.
Classic Spectrum programs work well
with the modern machine, too. From the
browser you can launch games and demos
stored in .tzx, .tap, .sna, and .z80 formats.
Some of these store the audio data from
old software tapes, and when you select
such a file, it will load in the classic way
which can take several minutes. You also
get the flickering border that you may
remember from the old days.

The browser also supports many other
file types; for example, it will open text

56

files, images, and videos in appropriate
viewers. Yes, the Spectrum Next can do
video playback, though the quality is not
very high.

A special folder, KS2Extras, contains
two brand-new games that have been
developed for this Kickstarter cam-
paign: Crowley World Tour 2 by Rusty
Pixels and Night Knight. Backers can
also download a brand-new version of
the classic Head over Heels (Figure 4)
from the Rusty Pixels website. That
game was not finished in time to put it
on the SD cards.

'

£

x

x

CP/M

When MS-DOS became the default
operating system for IBM-compatible
personal computers, it had not been in-
vented from scratch. Instead, it had
copied (and improved) many ideas from
CP/M, an older system that was primar-
ily used on computers with an Intel 8080
or a Zilog Z80 chip. With CP/M it was
possible to use standardized, profes-
sional software, such as Wordstar or
Turbo Pascal.

CP/M requires a floppy drive, and on
the Spectrum Next you can emulate sev-
eral such drives by assigning drive let-
ters to disk image files. Using CP/M on
the Spectrum Next has been simplified
in comparison to the KS1 model, be-
cause the owners of the CP/M intellec-
tual property have granted the right to
use and distribute CP/M source code
and binaries in 2022 [6]. Choose More |
CP/M in the menu to auto-install a mini-
mal CP/M system, and then do it again
to boot the fresh installation. Via special
import and export commands it is possi-
ble to transfer files between CP/M’s disk
images and the regular FAT32 filesystem
on the SD card: CP/M programs do not
understand the FAT32 format.

While CP/M apps should run on any
CP/M machine, there are a lot of incom-
patibilities that can make it tough to run
a program. For example, floppy disk for-
mats are not standardized, which means
that many disk images that are available
on Archive.org and other websites will

Rusty Pixels has ported the classic “Head over Heels” to the

Spectrum Next.

Search results for : batman

ID Name Size VYear

v

~TheMc }‘
atimnnnThotaid AN o=
GETIT1-3 EHK/23 - GOTO HYTPS://ZXNEXT UK/P TO UPLORD

Page : 1 / Results : §

Use Cursor UP/DOMN, Cursor LEFT/
ENT down | 0ad 0_search
File

1D

Size : 121248
Recm{mendpd ‘Ic\ade
W ading bBatman

REHY SHARP

Filenane

AL ERELNEEEENENEEREEEEEEESEEEEEEEE R RN R R AN R N RN RN RN NN NNEN NN

GO HUMMY!

GOMUMMY . ZIP

40KB

F7C929

21-12-23

HTTPS://RENYSHARP . ITCH. 10/G0-HUNHKY

UNZIP

OHUMHY . ZIP?
ARE YOU SURE? YES

On the Spectrum Next you can install lots of games via

downloader tools, such as Getlt.

be in a wrong format and CP/M on the
Spectrum Next will not be able to access
them. If you do manage to mount a disk
image and access its files, programs may
start but create garbled screen output, or
your keyboard may lack an important
key. I tried playing around with Turbo
Pascal 3.0 [7], and while I was able to
compile and run a simple Pascal pro-
gram, the application occasionally asked
me to press the Escape key — which does
not exist on the Spectrum Next
keyboard.

WiFi and Downloaders

Every KS2 Spectrum Next has built-in
WiFi, and it’s easy to connect to your
local WLAN. A helpful application that
uses the connectivity is the ZXDB

r<)

SYiPlay Pacman

Video

-

Doom 30
Egoshooter

LTINS Autostart
Mullinedia »
i Gaies >
Tools [Pocket Calculator
pad

Hi.pad

Symzila Brouser
Syton

A

[Stort|(Spaction for JF Sunshelt

Downloader [8]: It is pre-installed
(Apps | Wifi | zxdv-dl), connects to a
program database, and lets you enter a
search term. It then shows you all
matching entries, and if you’ve found
something you want to try out, just
download and run it. Getlt [9] is a sim-
ilar tool, but it looks even more mod-
ern and displays low-resolution screen-
shots of the apps (Figure 5). Getlt is
not pre-installed; the project website
has installation instructions.

Modern Times

If you’re interested and want to dig
deeper into modern Spectrum machines,
check out clones such as the N-Go [10]
and more general FPGA systems such as
the MiSTer FPGA on which you can also

p!
Hilleniun Hultitasking Operating Susten 53
for CPOSMSXEPCHEEPSNCESVHENEXT u
NXT 4.0-240207 (¢]Sunbiosis 20002024}
TRl Concept, desion ond main implementation
by Prodatron/5yimdiosis (Joern Mika)
Additional credits...

E002
User quide, quality assurance
and general support
TREBMINT
0Ouias IDE, HAK qame environment,
aeneral consulting and support
EINAR SAUKAS & INTROSPEC

Respacts to the whole 8bit comimunity!

SymbOS brings a Windows-like multi-tasking environment to

the Spectrum Next.

install a Spectrum Next core [11]. Those
are options for getting Next-like hard-
ware without waiting for the next Kick-
starter campaign, but then you won’t get
the pretty keyboard.

Also, have a look at the SymbOS op-
erating system [12]. It is available for
several Z80-based computers, and the
project website offers a preview pack-
age for the Spectrum Next that brings
multi-tasking and a Windows-95-like
desktop to the 8-bit computer (Figure 6).
The responsiveness of the system is
pretty amazing.

If you need some more reading ma-
terial, have a look at the new Next
Magazine [13], presented by Crash -
it’s a bi-monthly A5 publication by
FusionRetroBooks that discusses old
and new software titles for the Next
and helps you learn programming.
The very first issue has been pub-
lished at the end of March.

It’s amazing what 8-bit computers can
do. Of course, at 28MHz the Spectrum
Next is much faster than its predeces-
sors, but only by a factor of 8.

Wikipedia, ZX Spectrum:
SpecNext:
Software catalog:

Board changes:

TZX:

CP/M license:

Turbo Pascal 3.0:

ZXDB Downloader:

Getlt:

N-Go:

Spectrum Next Core for MiSTer
FPGA:

SymbOS preview:

Next Magazine:

<74

0000000000000 00600000000000000c0000000000c00d0000000dsRRSBTONOOIOIROIOLBLRLBIBLRLNLDS

RETRO COMPUTING Commodore 0S Vision 2

58

MAKERSPACE

Run your Commodore emulators
on a C64-look-alike PC

Keeping Up with
the Commodore

Commodore is back: First a computer case via
Kickstarter brings back the “bread box” form factor
but lets you put a Mini-ITX PC mainboard inside, and

now there’s a new Linux distribution that fits that
setup perfectly. By Hans-Georg EBer

000 00CAOO0OSOCEOOROO000000CCONONOSISOIONDONOSOSIOOONROOSOSIOOODROSSIOOONBDORSSOODS

here have been many attempts

to bring back the Commodore

C64 or some machine that looks

like it: You can get replacement
mainboards that work in the original case,
you can buy a THEC64 or its mini version
from Retro Games Ltd, and there’s also the
MEGAGS project which created a modern
FPGA-based version of the Commodore
C65 - a successor to the C64 that never
reached the manufacturing stage. All those
machines have one thing in common:
Their main goal is to let you run original
C64 programs, either with an emulator or
with an FPGA-based reimplementation
of the original hardware.

For those of you who only care about
the look and the unique bread-box form
factor of the C64, the Commodore 64x
(with an extra “x”) is a modern computer
in a C64-like case with a keyboard that
resembles the C64 keyboard while offer-
ing a layout that works with PC operating
systems. That machine was originally
available from 2011 to 2012, it came with
its own Commodore-branded Linux, and
it was revived in a Kickstarter campaign
in 2022 [1]. My Retro Computer Ltd. is
currently offering a C64x barebone case
(without a mainboard) for $215 or
EUR198, whereas Kickstarter backers
had options for fully pre-built setups
(Co4x Extreme and C64x Ultimate). The
website [2] still lists those models, but
they are out of stock.

In addition to the hardware, the 2011/
2012 Linux distribution has also been

updated: Commodore OS Vision 2.0 [3]
is a lovingly customized version of MX
Linux 21.3 (which itself is based on
Debian GNU/Linux 11), and while it is
intended for use with the C64x ma-
chines, there’s no stopping you from
running it on any modern computer (or
in a virtual machine). We’ll look at the
software first, because that’s what every-
one will have access to. Then in the sec-
ond part of the article we’ll talk about
the C64x case and its keyboard.

Commodore OS Vision

The 6GB ISO image (CommodoreOS-
20231213.is0) boots into a live system
that lets you try out all parts of the distri-
bution. Turn on your speakers before the
desktop appears, because you’ll be treated
to some computer voice output if you in-
crease the volume: It’s initially set to zero.
When the desktop appears, Commodore
OS first displays a welcome screen and
then asks you to agree to terms and condi-
tions — don’t just close that window: If you
do, youw’ll get a notification that the system
cannot be used without agreeing and “will
now self destruct,” and it reboots after
closing that note.

If you get past the terms and condi-
tions, the MX Linux installer (Figure 1)
starts. Close it if you simply want to play
around with the live system. Otherwise,
the installer lets you pick the right key-
board settings and partition your hard
disk, then it copies the files to the disk.
While that’s happening, you can set

MAKERSPACE-MAGAZINE.COM

Lead Image courtesy of Hans-Georg EBer

LR R R A R R R R R R R A A R R A A N N R R A A R R A N R R R R A N R R A N R N R A N R N N NN NN

Welp Live Log

Installation in Progress

For a fresn imsta, this will
take 3.20 mnutes.

depending on the speed of Tips

YO s b 18 ek of

= you are

M you click the Abort
button, the instaliation

special Thank
Thanks t everyone who has chosen to support Come
with thes time, money, suggestions. wark, prase, ideas,
promaticn, and/or ancouragement.

Wid Mar 21)
34 AM

)20 [

COMMODORE OS

Installation in progress

wdoce 05

Withaut you thees would be no Commadare 05

€05 Dev Team

being installed. you can
Cickon the tewt or Back
buttons to

information required for the

Comglete these steps at
your own pace. The
instaer will wait for your
input if necessary.

Figure 1: Commodore OS Vision uses the MX Linux installer, but with-

out its user account setup function.

computer and domain names, change the
workgroup for the Samba (SMB) server
(or disable it), and select locales and the
time zone (with both defaulting to Aus-
tralia) - that’s it. While the regular MX
installer will also let you configure a user
account and set a root password, Com-
modore OS skips that step. Instead it au-
tomatically creates a default user called
Commodore with the password C=, and
you can later auto-login to the installed
system and become root via sudo su with-
out entering a password. Once the instal-
lation is done, you can reboot. When you
start Commodore OS Vision from the
hard disk for the first time, it opens a se-
ries of information dialogs. Close one
window and the next one appears.

The pre-installed software is a mix of
pretty current and older software. You
get Kernel 6.5.0 (from August 2023), an

EC View arm

Checking CB4 Forever msi file has
wnloaded. ...

CB4 Forever msi file successfully
Extracting ROMs and games. ..
Checking for CB4 Forever msi
Found C64 Forever msi
Found C64 Forever msi
eos/sroms/s8-bit.

7-2ip [64]1 16.82

avlov 2816-85-21
p7zip Uersion 16.82
HugeFiles=on,64 bits, 4
9988HK CPU

Copyright

for archives:
bytes (137 HMiB)

Scanning the drive
1 file, 143478592

Extracting archive!
Path = C64Foreverifl.msi
Type = Compound
Physical Size =
Extension = msi

1434785392

Figure 2: A setup script downloads and unpacks
C64Forever.msi from Cloanto’s server [4].

file....
file in Downloads.
file in susrsshare/commodor

(c) 1939-2816 Igor P
(locale=en_Al.

CPUs Intel(R) Core(TH)
B 2.48GHz (SBGED),ASHM,AES-NI)

C64Foreverif.msi

older Mate 1.24.1 desktop (2020) with
wobbly window movement and a cube
animation for desktop switching, Libre-
Office 7.0.4 (again, from 2020) and some
of the other applications that are part of
Debian 11 (Bullseye). One of the addi-
tional APT repositories is misconfigured.
An update via apt update; apt upgrade
downloaded and installed 780MB of
software. While the project website
states that Commodore OS Vision 2.0
was released on December 13, 2023, the
software identifies as “v2.0 (Beta 3).”

Emulators
The Linux distribution features a selection
of home computer emulators. There are
two sub-menus named Commodore Emu-
lators and Emulators in the Applications
menu. The Com-
modore section

successfully do*
downloaded.

.

» Host

» Machine

» Display

» Rudio

v Input devices
Keyboard

UTF-8,Utfib=on,
§g=

Control port
» Peripheral devices
» Cartridges

contains entries for the 8-bit machines
(which all launch VICE 3.5.0) and the
Amiga computers (using FS-UAE 3.0.5),
but they all lack the required ROMs. For
the C64, the emulator includes open
source ROM replacements, so it will
launch, but it cannot handle any of the in-
cluded C64 games. In order to get the em-
ulators to run properly you need to obtain
official ROMs from Cloanto or extract them
from an original machine’s ROM chips.
Via the System | Commodore OS |
Cloanto Commodore ROM Setup menu
entry, you can download the “Free Ex-
press Version” from the C64 Forever
website (Figure 2). Once that process
has completed, you can run the C64 em-
ulator with its proper ROMs. Note that it
is preconfigured to simulate two joy-
sticks when pressing any of the WASD
(joystick #2) or cursor keys (joystick #1).
If you need to enter text, double-click to
switch from full-screen to window mode,
then press Alt+O (or select Settings |
Settings from the menu) to open the set-
tings, navigate to Input devices | Joystick
and disable the option Enable keyboard
joysticks (Figure 3). Also, if you want to
use a USB joystick, for example, the clas-
sic Competition Pro (which is period-cor-
rect for a C64), you need to open the
drop-down list below Joystick #2 and se-
lect the joystick (which will be the last
entry in the list). If you later notice that a
game expects a joystick in the first joy-
stick port, open the dialog again and click
on Swap joysticks. That will swap the set-
tings for Joystick #1 and Joystick #2.
Inside the C64 emulator, press Alt+ W
to enter Warp mode. The system will run

VICE [CB4SC)

Joystick #1 Joystick #2

Keyset A Keyset B

Userport Joystick #1 Userport Joy

None
Swap joysticks

() Enable keyboard joysticks

Configure keyset A

Figure 3: Disable this setting if you need to type
text inside the emulator; otherwise, the WASD keys
are interpreted as joystick movement.

59

Figure 4: Let's play Arkanoid! In th

-l - S

e background there are two more

Vice windows showing the BASIC screens of the C64 and C128.

much faster, which is especially useful
when you’re loading a game from a vir-
tual cassette tape or floppy. Press the
same hotkey again to switch back to reg-
ular mode when the game is done load-
ing - otherwise it might be unplayable.
The distribution has a lot of games,
demos, and audio files pre-installed: You
can find them in the file manager by fol-
lowing the Classic Software link in your
home directory. There are 88 C64 games
in the Commodore/C64/Games/Original_
Commodore_Games subfolder, and when
you run the Cloanto installer, you get 100
additional games. Double-clicking one of
the files in the file manager should auto-
matically load them in the Vice emula-
tor. If that does not work, right-click the
file and select Open With RunC64 in the
context menu.

If you’re not happy with the selection
of C64 games, you can visit the C64 Soft-
ware Library of the Internet Archive [5];
they’ve got everything. When I played
around with this system, I had to try out
Arkanoid, one of the classics (Figure 4).

The Amiga emulator (FS-UAE) re-
quires ROMS, too. The Cloanto Commo-
dore ROM setup tool will also help you
with those, but they are not available for
free. You can buy the Amiga Forever 10
Value Edition for EUR20 at Cloanto’s
AmigaForever store [6]. In the Emulators
sub-menu you find Atari 2600, Atari
Jaguar, DOS, Atari 16/32 Bit, MAME
Arcade, MSX, NES, Playstation 2, Sega

MAKERSPACE

60

Genesis, Sega Saturn, ZX Spectrum, and
Atari 8-bit emulators, but many of them
will not start without providing ROMs or
other media.

In addition to the emulators, you can
also play modern games: Under Appli-
cations | Gaming Services and Tools
you will find menu entries for Steam,
GOG, Lutris, the Heroic Games
Launcher, Wine, and PlayOnLinux.

Desktop

If you want to use Commodore OS Vision
for regular tasks as well, you will eventu-
ally work with the shell. The terminal
program has been configured to use a
C64-like font, and the shell prompt ends
in READY. on a separate line, mimicking
the C64 BASIC prompt. It also features a
blinking cursor. Run a terminal and the
C64 emulator side-by-side, adjust the font

UICE [CB4SC)

0000000000000 0000000000000000c0000000000c00do0ROORBNOSIOIRNOSIOONOOIOIROIOOLABIBADS

size in the terminal, and you will see that
they are lookalikes (Figure 5).

The desktop theme with its various
shades of blue is pretty unique, too, and
the system is noisy, both audibly and vi-
sually: Many actions, such as closing or
resizing a window, are accompanied by
system sounds, and the wobbling win-
dows and animated dock icons create a
restless atmosphere. Of course, you can
change all those settings and get rid of
elements you don’t like: This is a Linux
distribution, after all.

The Commodore 64x

The intended use of Commodore OS Vi-
sion is to install it on a modern Commo-
dore-look-alike. I have pledged for the
2022 Kickstarter campaign by My Retro
Computer, and as is custom with retro-
computing projects, it was more than a
year and a half until a pretty red Com-
modore 64x case was delivered to my
door. The barebone case does not con-
tain a mainboard or a power adapter, so
I bought an Asus Prime J4005I-C Mini-
ITX board with a built-in Intel Celeron
SoC, a Pico PSU (internal power supply),
a universal (external) power supply, a
small SSD drive, and an 8GB DDR4
memory stick. All of that fits nicely in-
side the case (Figure 6); there was only a
minor problem with connecting the in-
ternal and external power supplies. I re-
moved the USB hub on the right side of
the case and put the Pico PSU’s power
plug in its place. The suggested solution
is to drill a hole into the case, but I did
not want to risk ruining it. I had opted
for a hard-drive dock add-on which lets
you insert and remove an SSD or hard
disk without opening the case. However,
that requires screwing a lever to the
drive, and the eject procedure is difficult

=]

COMMODORE OS

vision

CommodorelcB4um

READY .
uname =-a
Linux cB4um

C Debian B.5.

S«
3=

amdB64 #1 SHP PREEMPT_DYNAMI

8-5-
(2823-11-29) x86_64 GNU/Linux

CommodoreBcB4vm ~

READY .
2]

Figure 5: The shell uses a Commodore-C64-like font and prints “READY.”

at the end of its prompt.

MAKERSPACE-MAGAZINE.COM

PososenseROERNOGOIOROIOINOSIOSEONOOIONOOTIOORNONOEOONONONOONRNOOOSONONOORNOOOONOROOOSORONRONOOODYS

These keys would have been good candi-
dates for function keys, but on the C64x
they are labeled Internet, E-Mail, Files,
and Volume up/down. When used with
Fn they turn into media control keys.

Final Thoughts

While I've been critical of some of the
design choices in both the Commodore
OS Vision Linux distribution and the
Commodore 64x case and keyboard, it
is important to remember that these are
both projects created by Commodore
fans for Commodore fans. You cannot at
the same time cram a full standard key-
board into such a case and preserve the
look of the original machine, and it also
makes sense that a dedicated Commo-
dore-styled Linux distribution differs a

Figure 6: The Commodore 64x lets you install a Mini-ITX PC mainboard.

and might break the dock if done too
often. There are better solutions for hot-
swapping disks.

Whereas RetroGames” THEC64 uses
the authentic keyboard layout of the

e b ke kR E R E
8 N H R K)a (N

e R EE e e

3

o o o

€1 € 62 sHEiN-K-N-K: K)

ceufofwReENRET Y QU Hogr Ne NN -0 1) [

Ffgdaddgoagaeagoesacs 3
addoodddode s g ae [

original machines, the Commodore 64x
comes with a somewhat similar but
modernized layout (Figure 7). It lets you
use the internal computer with a modern
operating system, such as Windows or
Linux. The keyboard
has no function keys,
but you can hold the
Fn key and press 1 to
0, -and = to gener-
ate FI to F12 key-
strokes. However,
hotkeys such as

Alt + F4 require some

that the keyboard has
no function keys, be-
cause there are five
wide special keys on
the right (where a
classic C64 has its
four function keys).

Figure 7: Same form factor, but very different -
top to bottom: the Commodore 64x (2024), Retro-

Games THEC64 (2020), and Commodore C16 (1984).

lot from our standard systems because
what would be the point if it didn’t?
Mixing current technology and the
classic case lets you build a pretty gam-
ing rig that plays both the classic games
of the old home computers and - de-
pending on what kind of hardware you
put inside - current games. I would not
recommend the machine for daily work
if it involves typing a lot: The keyboard
layout is just too different, and while
you could connect a regular keyboard,
that would look a little silly. But for gam-
ing, web browsing, watching videos, or
consuming other media, it is a good al-
ternative to a boring standard computer

skillful finger place- box, and it will be an eye-catcher in the
ment, and you need living room if you place it next to your
both hands. TV. For maximum nostalgia, connect an

It makes no sense older monitor with a 4:3 aspect ratio
(ideally a CRT) and run the C64 emula-
tor in full screen.

The 1980s brand still exists in 2024, and
several projects are keeping it alive. As
they said in the ads: “Are you keeping up
with the Commodore? ‘Cause the Com-
modore is keeping up with you!” [7]. mum

Commodore 64x 2022 Kickstarter:

https:/A

the-commodor
.com/order-now/

MyRetroComputer shop: hitps;/myret

Commodore OS Vision: https.//www.commodoreos.nety

Cloanto, C64 Forever: htips: Aforever.com

Internet Archive, Software Library: C64:

https://archive.org/details/softwareli

Cloanto, Amiga Forever: https;
Commodore tv commercial:
https:;//www.youtube.com/watch ?v=95c Gh9EeMIY

61

0000000000000 0000000000000000c0000000000c00d0000000dsRRSONOMOIOIROIOLORNLBIBLALMLS

RETRO COMPUTING BCPL

62

MAKERSPACE

I AR R E R E N NN ERESEEEEEREENESERE R ERNEE SN EEEENRENENESENRENENESENEESEERNERNRZSHNRS:]

n the 1960s, the main high-level

programming languages were For-

tran, Basic, Algol 60, and COBOL.

To optimize code or to provide
low-level operations, assembler program-
ming offered the only means to access
registers and execute specific machine
instructions. BCPL, which was used as a
teaching language in many universities,
provided a language with a rich syntax,
addressed the scoping limitations of the
other languages, and had low-level op-
erations such as bit manipulation and
computation of variable addresses.

Where BCPL differs from the other lan-
guages is that it is typeless; all variables
are considered to be a word, typically 16
or 32 bits. Programmers can access indi-
vidual bits and bytes of a word, perform
both arithmetic and logical operations on
words, compute the address of a word, or
use a word as a pointer to another word.
One further novel aspect of BCPL is that
the compiler is small and written in BCPL,
producing intermediate code for a virtual
machine and simplifying the development
of the compiler for a wide range of com-
puters. BCPL was used on mainframe
computers and minicomputers in the
1970s and microprocessors in the 1980s.
The early developers of Unix were in-

fluenced by, and many aspects of C were
adopted directly from, BCPL. Although
BCPL also supported characters and
bytes, the lack of richer types was ad-
dressed in C, which became the

BCPL for the Raspberry Pi

Before C

The venerable BCPL procedural structured
programming language is fast to compile, is
reliable and efficient, offers a wide range of
software libraries and system functions, and is
available on several platforms, including the
Raspberry Pi. By Dave Allerton

programming language of choice for
Unix (and subsequently Linux), leaving
BCPL mostly for academic applications.
Several groups developed compilers, op-
erating systems, software utilities, com-
mercial packages, and even flight simu-
lation software in BCPL, but for the most
part, BCPL has been forgotten.

The demise of BCPL in both academia
and industry is disappointing, particu-
larly because it is a powerful teaching
language, introducing students to algo-
rithms, software design, and compiler
design. Later, languages such as Pascal
and Modula-2 became popular lan-
guages to introduce concepts in com-
puter science but have been superseded
by Java, Python, and C++. Whereas the
learning curve for BCPL is small, en-
abling students to become productive in
a short time, the complexity of lan-
guages such as C++ can be a barrier to
students learning their first programming
language.

The BCPL Language

The example in Listing 1 of a small BCPL
program computes factorial values from
1! to 5!. Because C was developed from
BCPL, the syntax of both languages is
similar. The include directive in C is a
GET directive in BCPL, the assignment
operator = in C is := in BCPL, and the
fences (curly brackets) { and } are iden-
tical. In C the address of a variable a is
denoted by &a, whereas in BCPL it is

MAKERSPACE-MAGAZINE.COM

Lead Image © videodoctor, 123RF.com

given by @a. Indirection, or the use of
pointers, is given by *ain C or !ain
BCPL. Arrays are organized so that a!b
in BCPL corresponds to a[b] in C.

The GET directive includes the com-
mon procedures and definitions needed
in the compilation of a program. The
procedure start is similar to main in C,
where the VALOF keyword denotes that
start is a function with the result re-
turned by the RESULTIS keyword. The
variable i, a local variable of the pro-
cedure start, is implicitly defined at
the start of the FOR loop, which is exe-
cuted five times. The uritef function is
similar to printf in C. The recursive
function fact tests whether n is zero
and returns either 1 or n*(n-1) !, where
the parameter n is a local variable of
the procedure fact.

In BCPL, a variable is defined as a
word that can represent an integer, a bit
pattern, a character, a pointer to a string
of characters, a floating-point number, or
an address. A programmer can apply
arithmetic operators, logical operators,
shift operators, an address operator, or
indirection to a variable - the compiler
assumes that the programmer knows
what they are doing and, subject to syn-
tactic and sematic compilation checks,
places very few constraints on program-
ming constructions. Arguably, C and
BCPL fall into the category of languages
that provide almost unlimited power for
a programmer with very few checks on
their intention.

Both C and BCPL allow sections of a
program to be compiled separately (e.g.,
to provide a library of functions). Global
variables and procedures in BCPL,
which are similar to external variables
and functions in C, can be accessed by
all sections of a program, whereas static
variables are only accessible from the
section in which they are declared. The
other category of variables is local or dy-
namic variables, which are declared and
used in the same way as C. When a local
variable is declared, space is allocated
on a stack, which grows and shrinks dy-
namically, typically on entry to and exit
from a procedure, respectively, enabling
procedures to be called recursively.

Portability

BCPL was developed by Martin Rich-
ards in the Computer Laboratory at the
University of Cambridge. His more

LA R R R EEEENENEERENE R EEEE SRR E AN REE R RN R R E A N R NN RN AN RN YN NNRNNNN)

recent Cintcode implementation is ex-
tensive and provides numerous exam-
ples of coding, mathematical algo-
rithms, and even operating system
functions. The advantages of this im-
plementation are considerable: It is
fast to compile, is reliable and effi-
cient, and offers a wide range of soft-
ware libraries and system functions. It
is also available on several platforms,
including the PC and the Raspberry Pi.
The only drawback is the loss of speed
from interpreting the compiled code.

I refer you to Martin Richard’s text-
book [1], and his website [2] which in-
cludes a version of Cintcode, that is
straightforward to download and imple-
ment on an RPi. Also, a guide directed
at young people programming a Rasp-
berry Pi [3] provides an extensive de-
scription of BCPL and the Cintcode
implementation and numerous exam-
ples of BCPL programs.

For the programmer intending to
write applications in BCPL that exploit
the processing power of the ARM cores
of a Raspberry Pi, a BCPL compiler
generating ARM instructions directly is
likely to produce code which runs con-
siderably faster than interpreted code.
For other users less concerned with
processing speed, the tools and sup-
port provided by the Cintcode imple-
mentation of BCPL offer a stable and
reliable platform.

BCPL for the Raspberry Pi
The arrival of the Raspberry Pi with its
ARM cores, network connection, sound
and video outputs, USB ports, and I/0
interface running under the Linux op-
erating system has encouraged the de-
velopment of a range of programming
languages for this platform. A code gen-
erator for BCPL that I developed com-
piles BCPL directly to ARM machine
code, which can be linked
with the standard Linux gcc
toolset. The compiler (7,000

01 GET
lines) compiles itself in less -
than 0.2 seconds on a Rasp- o) TR
berry Pi 4B. -
This 32-bit implementa- -
tion of BCPL compiles a "

BCPL program prog.b to

o7
prog.o, where prog.o is a e
Linux object module linked
. . .) 09
with two libraries - blib.o
10 AND

and alib.o - by the gcc

linker to produce an executable ELF
module, prog. The library b1ib.b is writ-
ten in BCPL and contains the common
BCPL library functions. A small library
alib.s is written in Linux assembler
and contains low-level functions to ac-
cess the Linux runtime environment.

Although the gcc linker builds the exe-
cutable program, the object code pro-
duced by the compiler contains only
blocks of position-independent code, re-
quiring no relocation. At runtime, alib
initializes the BCPL environment, setting
up the workspace for the stack and
global and static variables. Strictly, gcc
is only used to generate a Linux-compat-
ible module that can be loaded, whereas
the linking of a BCPL program and libraries
is performed by alib.

Notes for Developers

The compiler uses registers r0 to r9 for
arithmetic operations, logic operations,
and procedure calls. The code generator
attempts to optimize the code by keep-
ing variables in registers, minimizing the
number of memory accesses.

Register rg points to the global vector,
and register rp is the BCPL stack pointer
or frame pointer. Procedure linkage, pro-
cedure arguments, and local variables are
allocated space in the current frame.
Stack space is claimed on entry to a pro-
cedure and released on return from a pro-
cedure. The link register ir holds the re-
turn address on entry to a procedure and
can also be used as a temporary register
within a procedure. The system stack
pointer sp is not used by the BCPL com-
piler, so it can be used to push and pop
temporary variables. The compiler uses
the BCPL stack for procedure linkage and
the storage of local variables. It should be
noted that the ARM core is a pipelined
processor and reference to pc during an
instruction implies the address of the

1! to 5! in BCPL

"1libhdr"

start() = VALOF

FOR i = 1 TO 5 DO
writef("fact(%n) = %is*n", i, fact(i))

RESULTIS O

fact(n) = n=0 -> 1, n¥fact(n-1)

63

current instruction + 8 for most instruc-
tions. The program counter pc is used in
the code generation of relative addresses
used for procedure calls and branches
and also in suitchon expressions in BCPL.

Although Linux libraries are not ex-
plicitly linked, the libc library is avail-
able to BCPL programs. Fortunately, the
register calling mechanisms of the GNU
gcc tool chain and BCPL are distinct and
independent. The BCPL stack grows up-
ward, with no access or modification to
the system stack. In C, the stack grows
downward, and local variables are stored
relative to the system stack pointer sp.
Consequently, it is possible to call C
functions from BCPL.

In the ARM Procedure Call Standard
(APCS), the first four arguments are
loaded into registers 10, r1, 2, and r3,
respectively, and a result is returned in
register r0. The address of the procedure
is computed, and the procedure is called
by an appropriate branch and link (bl)
instruction or a branch, link, and ex-
change instruction (blx).

However, C and BCPL have two impor-
tant differences: (1) BCPL strings are de-
fined by the string size in the first byte
followed by the 8-bit characters of the
string, whereas strings in C are arrays of
8-bit characters terminated with a zero
byte. BCPL strings must be converted to
C strings, if calling C. (2) Addresses of
variables, vectors, and strings in BCPL
are word addresses, whereas they are ma-
chine addresses in C. Passing an address
from BCPL to C requires a logical left shift
of two places, and passing an address

: BCPL Registers

Register Name Function

0 ro Data register 0
1 il Data register 1
2 12 Data register 2
2 2 Data register 3
4 4 Data register 4
B r5 Data register 5
6 6 Data register 6
7 74 Data register 7
8 r8 Data register 8

8 r9 Data register 9

10 rg Global vector

11 mw BCPL stack

12 ip Unused

13 Ir Link register

14 sp System stack pointer
15 pc Program counter

64 MAKERSPACE

from C to BCPL requires a logical right
shift of two places. Care is needed with
strings in C because they are not neces-
sary aligned on 32-bit word boundaries.

In both C and BCPL, the registers r0-r9
are not preserved across procedure calls.
Additionally, the BCPL registers rp, rg, and
Ir cannot be guaranteed to be preserved in
C, and it is advisable to store these regis-
ters before calling a C procedure. In prac-
tice, they can be pushed onto the system
stack and popped on return by:

push {rg, rp, 1lr}
pop {rg, rp, 1r}

The code produced by the code genera-
tor for the factorial example is shown in

: Code Generator Output

0000000000000 0000000000000000c000000d0000c00ds00RORROSRRNSIOONOIOIOIROIOLORLBIBANLSDS

RETRO COMPUTING BCPL

Listing 2 with comments to explain spe-
cific instructions. Note that register 10 is
reloaded at location 0x38 because it is
reached by code from locations 0x34 and
0x74; consequently, the content of regis-
ter 10 is not assured. Additionally, the
reference to the string

"fact(%n) = %i4*n"

is not known at location 0x4C when the
instruction is generated; therefore, a full
static reference is generated with the off-
set 0x00000028 stored at location 0x90.

Installation

The file bcpl_distribution [4] contains
the files shown in Table 2. The object

0: 0000603C data Section size (words)
4: eeeefddf data Section identifier
8: 6361660b data Section name “fact”
Cc: 20202074 data
10: 20202020 data
14: peeedfdf data Entry identifier
18: 6174730b data Procedure name “start”
1c: 20207472 data
20: 20202020 data
24: e8a4c860 stmia r4ly86p; e, pck Standard procedure entry
28: ©884000f stm 4, ir8,cliR2 Jr3k
2c: e244b@6c sub fp,rd, #12
30: €3a00001 mov ro,#l1 Initial value i
34: e58heeec str ro, [fp,#12] Save i
38: e59beeec ldr ro, [fp,#12] Load i
3G e28b4024 add r4,fp,#36 Set new stack frame
40: eb0eee17 bl Bxad Call f(i)
44: 1202060 mov ra,re Arg 3 = f(i)
48: e59b1e6c ldr ri,[fp,#12] Arg2 =i
4c: e59fed3c 1dr ir,[pc,#68] Arg 1 = “fact(%n) = %i4*n”
50: €08f000e add re,pc,Ir pc offset
54: e1an0120 lsr re,re, #2 BCPL address
58: e28b4010 add r4,fp,#16 Set new stack frame
56 e59ae178 ldr Ir,[s1,#376] Global writef
60: el2fff3e blx lir: Call writef()
64: e59beeec 1dr ro, [fp,#12] Load i
68: £2800001 add re,re, #1 Increment by 1
6C: e58b08e6C str ro, [fp,#12] Store i
70: €3500005 cmp roe,#5 Check end of for-loop
74: daffffef ble 0x38 Continue for-loop
78: ©3300000 nov ro,#o Return 0
76+ e89b8800 Tdm fp,{fp,pc3 Standard procedure return
80: 6361660f data String “fact(%n) = %i4*n”
84: 6e252874 data
88: 203d20829 data
8c: 83346925 data

MAKERSPACE-MAGAZINE.COM

Iseoe0nenaNOeRNOERNOSOIAOROONOIOENOOINROIOORNONSEONOOONONIOSONRNOOOSONONOORNONOOOROOOORORNONOOODYS

BCPL RETRO COMPUTING

ing 2: Code Generator Output (continued)

files bcpl.o and b1ib.o each contain a

90: 00000028 data block of position-independent code.
94: 9008dfdf data Entry identifier The assembler module Ie.ader. s pro-
98: 6361668b data String “fact” vides a means of identifying the start of
9c: 20282074 data a BCPL program. The runtime library
a0 20202020 e .al 1{); is (\i)vrltten Tn as:emt;ller lcobdel and
) includes data regions for the global

afe eoadesn PR L e el iy variables and stftic Variablesgand is
a8: e884000f stm r4,{re,ri,r2,r3)) ;

i y : {4 " ! linked to the GNU C runtime library

5 # . y
2 : 5 - Bl libc. Note that the files bcp1.b and
DES & sanaaD elp fid Testn=0 bcplfecg.h are only needed to rebuild
UL 00001 bhe 2xcy Skip if not the compiler and are not required for
b8: 3300001 mov ro,#l1 Return 1 user applications.
bc: e89b8ses 1dm fp,{fp,pc} Standard procedure return The distribution also includes several
cé: e59beeec ldr ro,[fp,#12] Load n BCPL examples and a user guide (Table 3).
cd: ©2400001 sub ro,ro, #1 Decrement n The programs queens.b and primes.b are
c8: e28b4ele add r4,fp,#16 Set new stack frame described in Martin Richard’s excellent
cc: ebfffff4 bl 0xa4 Call f(n-1) notes to young people interested in pro-
de: e59p188c ldr r1,[fp, #12] Gotn gramming the Raspberry Pi [3].
dd: e0900199 it re,re,ri Return n*(n-1) To install BCPL on a Raspberry Pi
d8: e89b8800 1dm fp, {fp,pc} Standard procedure return Madel S, C'reaFe 4 Flew'dlrgctory
dc: 80990098 data o and copy the dlStI‘lbutl(?n f%les in
bepl-distribution to this directory. Al-

ed: 06000060 data Start of global vector . !

o i Global ternatively, to install BCPL on a Rasp-
B. o ot obai't atart) berry Pi Model 2, copy the distribution
s ate Crisentoglobail files in bcpl-distribution-rpi2. In a ter-

S st Maximum global of the section minal shell, enter the commands

IT Highlights at a Glance

HPCUPDATE

Septonbes 12, 2023

LINUX

UPDATE

DEDICATED CLOUD PLANS

This Month's Feature

Whare D
Uy Jett
":"‘;‘p Creating Custom ISO
ooy Images

’ I you are locking 10 Customize your Linux
distnbution, we show you three graphical
Response Automal o0t ends for creasng bootatie ISO
Shutfie it

Secusty orchestration, aurd]
(SOAR) & Increasingly imp]

News and Resources

* Microsoft Infreducen Copict Kev 12 PC Keydoards
* G154 Warns of Vidrerabiities Afesting Google Ched
facel

smator
MINagOmEnt system SO et Of s, while GEMINGTng SRACK voctors.
Cloning 8 Debion System with api-clone
11110 iGht Croumetances, B5¢-<one Can b & MO G0N or cloneg
In Case You Missed It your Deban systom.

A Modern L29ging Solutien
Fluanid and s Sghter counterpan Fent 84 can help you undy data colection
anc 1o make sense of bgging data.

Too busy to wade through press releases and chatty
tech news sites? Let us deliver the most relevant news,
technical articles, and tool tips — straight to your Inbox.

ADMIN Update + ADMIN HPC
Keep your finger on the pulse of the IT industry.

Linux Update -

ADMIN and HPC: bit.ly/HPC-ADMIN-Update
Linux Update: bit.ly/Linux-Update

unzip bepl-distribution.zip
as leader.s -o leader.o
as alib.s -o alib.o

gee leader.o bepl.o blib.o alib.o -o bepl

to build and test the compiler (> denotes
the Linux prompt).

For a first compiler test, compile and
run the program fact.b, which prints the
factorial numbers from 1! to 5!:

./bepl fact.b -o fact
./fact

Further confidence tests rebuild the
BCPL compiler bepl.b with the BCPL
compiler and build the library blib.b:

./bepl bepl.b -o bepl
./bepl -c blib.b

The BCPL library files and the compiler
can then be copied to the appropriate
Linux shared directories:

sudo mkdir /usr/include/BCPL

sudo cp libhdr.h /usr/include/BCPL/
sudo cp bepl /usr/bin/

sudo cp leader.o /usr/lib/

Table 2: bepl_distribution

sudo cp blib.o /usr/lib/
sudo cp alib.o /usr/lib/

The remaining BCPL programs can now
be compiled and run with the command
bepl rather than . /bepl. The compiler
searches for library files in the working
directory before searching the directories
/usr/include/BCPL and /usr/11b.

Nostalgia
The influence of BCPL on the develop-
ment of C and its later variants cannot
be overstated. The availability of BCPL
for the Raspberry Pi allows old com-
puter science students to dust off cop-
ies of their programs, which should
run directly on the Raspberry Pi. BCPL
was used extensively in many UK uni-
versity computer science departments.
The portable multi-tasking operating
system Tripos was written entirely in
BCPL in the Computer Laboratory at
the University of Cambridge and used
in early versions of the Commodore
Amiga, in the automotive industry, and
in financial applications.

The logic simulator HILO-2 (the fore-
runner of Verilog) was developed in

File Name Function

The code generator used by the BCPL compiler for the ARM processor

A small assembler program only used to locate the start of a BCPL program

alib.s A runtime library written in GNU ARM assembler

blib.b The BCPL runtime library, written in BCPL

blib.o A precompiled version of the BCPL runtime library b1ib.b

bepl.b The BCPL compiler and code generator to run under Linux
bcpl.o A precompiled version of the BCPL compiler and code generator
bcplcg.b

bcpifecg.h A header file used by the code generator

leader.s

Tibhdr.h The standard BCPL header

Table 3: BCPL Examples and User Guide

A small program to time the execution of a small fragment of BCPL

An implementation of the “Queens” problem for 1 to 16 pieces

bench.b

fact.p A small program to print the factorial numbers from 1! to 5!
primes.b A small program to print the prime numbers less than 1,000
queens.b

quide.pdf

A guide to BCPL for the Raspberry Pi, including installation notes

0000000000000 0000000000000000600060000000c00d0000000d000s0RORLIROIOLARIOOLBLSAERBISGLS

RETRO COMPUTING BCPL

BCPL. Numerous utilities, including
the early word processor roff were
written in BCPL. Before the availability
of floating-point hardware, I adapted
BCPL compilers for the Motorola 6809
and 68000 processors to use scaled
fixed-point arithmetic in real-time
flight simulation. mmm

Info

[1]1 Richards, Martin. BCPL: The Language
and its Compiler, revised ed. Cam-
bridge Univ Press, 2009:
https://www.amazon.com/BCPL-
Language-Compiler-Martin-Richards/
dp/0521286816

[2] Martin Richards:
https.//www.cl.cam.ac.uk/~mr10/

[2] Richards, M., Young Persons Guide to
BCPL Programming on the Raspberry
Pi Part 1. Cambridge (UK): Computer
Laboratory, University of Cambridge,
revised 23 Oct 2018:
https://www.cl.cam.ac.uk/~mr10/
bepl4raspi.pdf

[4] Code for this article:
https:/linuxnewmedia.thegood.
cloud/s/XnzsiEKtagjHKr3

Author

Dave Allerton obtained a PhD from the
University of Cambridge in 1977 and
worked in the defense industry before
spending 10 years at the University of
Southampton as a lecturer in computing.
He was the Professor of Avionics at Cran-
field University before moving to the Uni-
versity of Sheffield as Professor of Com-
puter Systems Engineering, where he is
currently an Emeritus Professor. He is also
a Visiting Professor at Cranfield University
and at Queen Mary University of London.
His research activities include flight simu-
lation, computer graphics and real-time
computing. He is author of two textbooks,
Principles of Flight Simulation (Wiley,
2009, ISBN 978-0-470-75436-8) and Flight
Simulation Software: Design, Develop-
ment and Testing (Wiley, 2022, ISBN 978-
1-11973-767-4).

66 MAKERSPACE

MAKERSPACE-MAGAZINE.COM

Hone Your Skills
- with -

Special Issues!

T Get to know Shell,
LibreOffice, Linux, and
- more from our Special
e Issues library.

GETTING STARTED WITH

The Linux Magazine team has
created a series of single volumes
that give you a deep-dive into the
topics you want. »

= X8| Available in print or digital format

;g [RASFBERRY Pl GEEK

SUPERC ARGE s et

7 ” BUILD A RASP Pl RADIO!
YOUR LINUX SKILLS S FREE Maker S aC e &.Jk
S PP p MakerSpace @

"’..Z;.‘”,”,'fi':i,”‘”"‘ HANDS- Oh Se= RASP PI TRICKS
* Create custom scripts P R OJ E CTS @ FEED YOUR FISH WHILE YOU'RE AWAY D§

SE berntin MAKERS | MakerSpace® E

1
reference! Dive Into
& ® Raspberry
w:n-anu) =N ® Arduino. AN s-oN
wnu’mmc

}
Edit and Save earn f ns 'l FPGA
ar o

Professional: MS Office Files

* Text Documents : 7]

* Spreadsheets ‘\"U‘-:‘« e MS Office
* Presentations and Google Docs!

* Databases

Privacy First!

Keep your data safe

from prying eyes

LibreDffice

~
i
i
L

! backgtound Image © ro',vs\udinsz?iRithq
-4 8 : -

O8] Check out the full library!
[5] shop.linuxnewmedia.com

Mike Schilli works as a

software engineer in the

San Francisco Bay Area,

California. Each month

in his Linux Magazine

column, which has been

running since 1997, he researches
practical applications of various
programming languages. If you email
him at mschilli@perlmeister.com he will
gladly answer any questions.

68

Flashing and programming

an LED display

Project
Blinking Lights

The Ulanzi TC001 is a low-budget LED display that

lets you customize the firmware and add some

homemade scripts. By Mike Schilli

G000 0CPAOOPPOO0OOOONDROCOROONOIONOOENONOOOEOIOEODRONOEOOONOIOPONOEEOPONDOEIODOOESOROODROOROOOEOROTDS

xternal displays that continu-

ously show data without a real

screen, even when the com-

puter is taking a nap, are a
genuine upgrade to any office. Of course,
they can be used to display the time or
weather, but they can also perform un-
usual tasks tailored to your needs. The
reasonably priced Ulanzi TC001 [1] ended
up on my doorstep within a week for
around $60, after traveling all the way
from China to the USA. My original idea
was to use it to build a “Wealth Clock”
that shows the current gold level in all my
money stores so that I know how wealthy
I am at any given time.

Flashing Custom Firmware
The LED display
has a retro feel. Of
course, there are
higher-resolution
displays available
today, but the LED
display is defi-
nitely suitable for
displaying short
character strings
and gives you a
sort of cozy Tetris
feeling at the
same time. The
included firmware
can only do mun-
dane tasks such
as displaying the

time, the date, and the battery level, but
the Awtrix [2] project offers open source
firmware including a browser-based in-
stant flashing tool that turns the device
into a Jack of all trades in next to no
time. Figure 1 shows how the new
firmware boots up.

The device does not offer much RAM,
and the processor is a modest ESP32. Al-
though this microcontroller can handle
WiFi and Bluetooth, its performance
cannot be compared to that of a modern
CPU. This is why more demanding ap-
plications aren’t running directly on the
Ulanzi. Instead, they are chugging along
on an external computer with more
power, which then uses an API com-
mand to periodically tell Awtrix what to

Figure 1: Booting the Ulanzi after flashing with the
Awtrix firmware.

1e, 123RF.com

Customizing an LED Display

%

@ O & 192168.87.22

£ awTRix Lignt 0.90

WIFISetup. Network MQTT Time Icons Auth Files Update LiveView

Backup Docs Flows

Connect to WiFi

SSID: gland-5g, IP address: 192.168.87.22

Store WiFi credentials o

AWTRIX Light App

f’ Google Play

& AppStore

Figure 2: The Awtrix admin interface in the web browser.

display. After completing the boot pro-
cess, the firmware rotates through all of
its configured standard apps: time/date,
temperature, humidity provided by its
internal sensors, and current battery

Figure 3: The display counts the days, hours, and

minutes until a birthday.

strength. But that’s not the objective
here. Instead, we will be disabling the
standard apps one by one in order to up-
load our own custom apps.

Perpetual
Cycle

To do this, you
need to press and
hold the center
button with the
circle at the top of
the Ulanzi for
about two sec-
onds; this will
force Awtrix to

package main
import (

nEmt"

"time"

)

Figure 4: Followers and uploads on my YouTube
channel.

ER R EREREEERE SN EEREEEEEER NN RN RN EEEE SRR NN E R EE SRR RN RN NN R RNENNR.]

PROGRAMMING

jump into the admin console. One of
the submenus there is named Apps.

Another short press on the circle but-
ton shows the status of the first app
(e.g., the remaining capacity of the built-
in battery). The display can be operated
for around five hours without a power
cable using the built-in battery - but this
is unlikely to be useful to anyone, be-
cause it definitely requires a power
socket for continuous operation.

Pressing the arrow buttons to the left
or right now reveals additional apps
such as the temperature or humidity
display, or the time and date. Briefly
pressing the circle button switches the
displayed app off or back on again; the
firmware acknowledges this by display-
ing off or on.

A long press on the circle button
causes the console to jump back up to
the next level and ultimately return to
the infinite app cycle. Once you have
disabled all the default apps, you will
now see nothing but a dark display.

Meaningless Password

The Awtrix firmware’s web Ul and API can
be protected with a username and pass-
word using the Admin console (Figure 2).
However, the mini web server on the de-
vice then expects login credentials for each
request via basic authorization using un-
protected HTTP. That is not exactly state-
of-the-art: Anyone listening in on the
WiFi network can sniff the password.

To integrate new custom apps into
the firmware display loop, clients ei-
ther can use the MQTT interface,
which is particularly popular for
home automation systems, or send

countdown.go

func DHMUntil(until time.Time) string {
dur := time.Until(until)
days := int(dur.Hours() / 24)
hours := int(dur.Hours()) % 24

mins := int(dur.Minutes()) % 60

return fmt.Sprintf("%02d:%02d:%02d", days, hours, mins)

0000000000000 000000000600000000000000000c00d0000000d00bsBROOIOIROIOLARNLBIBIALLSDS ®

PROGRAMMING Customizing an LED Display

commands via the web API. The latter
is not well-documented on GitHub,
but, ultimately, a POST request to the
Ulanzi’s IP on the WiFi network is all

WiFi Setup

Netwo

§3 awTRIX Light 0.90

k MQTT

Time fleons Auth Files

it takes. After flashing with the new
firmware, the device starts in AP
mode. If you select the new awtrix_XXX
WiFi network on a laptop or smart-
phone, you can send the WiFi access
credentials for the home network to
the Ulanzi in the browser that then
opens. After a reboot, the Ulanzi then
connects to the WiFi network and
grabs an IP, which it shows on the dis-
play when booting up.

API calls for setting up new apps

Icon ID
23003

Icons

will be sent to this IP and the path
/api/custon; they also require a (freely
selectable) name for the app and a
JSON blob with the desired display

¢ Restart ESP B Save configuration

content.

Listing 2: api.go
01 package main

02 import (

03 "bytes"

o4 "encoding/json"

05 W

06 "net/http"

07)

08

09 const baseURL = "http://192.168.87.22/api/custom"
10

11 type apiPayload struct {

12 Text string ‘json:"text"'

13 Rainbow bool * json:"rainbow"®
14 Duration int * json:"duration"®
15 Icon int ‘json:"icon"®

16 }

alvs

18 func postToAPI(name string, p apiPayload) error {

Listing 3: youtube.go

01 package main

02

03 import (

o4 "context"

05 "google.golang.org/api/option"

06 "google.golang.org/api/youtube/v3"

07 "log"

08)

09

10 const ChannelID = "UC4U1BOISsNy4HcQFWSrnVsQ'"

11 const ApiKey = "AIzaSyZmOrarSDWqrnAwIKkWGzjovaVQtyvPokB"
func youtubeStats() (uinte4, uinte4, error) {

ctx := context.Background()

70 MAKERSPACE

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35 }

15

1le

17
18
19
20
21
22
23
24
25
26

Figure 5: A money bag as a symbol for the wealth clock.

url := baseURL + "?name=" + name

JjsonBytes, err := json.Marshal(p)
if err != nil {

return 0, err

resp, err := http.Post(url, "application/json", bytes.

NewBuffer(jsonBytes))
if err != nil {

return 0, err
}
defer resp.Body.Close()

if resp.StatusCode != http.StatusOK {
return fmt.Errorf("%v", resp.StatusCode)

}

return nil

service, err := youtube.NewService(ctx, option.
WithAPIKey(ApiKey))

resp, err := service.Channels.List([]
string{"statistics"}).Id(ChannelID).Do()

if err != nil {

log.Fatalf("%v", err)

if len(resp.Items) == 0 {
log.Fatal("Channel not found")

stat := resp.Items[0].Statistics

return stat.SubscriberCount, stat.VideoCount, nil

MAKERSPACE-MAGAZINE.COM

AR EREREERELEREEEEEEEEEEREEREEEEEEEEE RSN EEE R E NN RN AN R NN RN RN RN SN SRNNERNENNN)

Customizing an LED Display PROGRAMMING

Birthday Countdown

First of all, I decided to add a new app
to the display that counts down the
days, hours, and minutes until a speci-
fied date, for example, a birthday (Fig-
ure 3). Listing 1 uses the DHMUnti1()
function to calculate the time span be-
tween the current time and the corre-
sponding date. It then divides the re-
sulting number of hours by 24 to com-
pute the number of days. A Mod 24

operation extracts the remaining hours

extracts the remaining minutes.
What you get back is a string in a
DD:HH: MM format, which the API call in

the control computer how often the
countdown is refreshed. If, for example,
a cron job only starts every 15 minutes,
the counter will lag behind by a quarter
of an hour worst case.

DEVELOPER

GALLERY CREATE ICON

Popular v money

#9177 #10036 #10304 #10380 #11384 #13460 #19542 820376 522281 422286 #23003
The Hapo. Moneybird maney money Money Money money meney money moneyrain | money bag
#26168 #26536 #27863 ¥30756 #30757 #32818 #32824 #32825 932899 ¥32900 934196
Money H. Stock Cha, Money MONEY MONEY Stripemo,.. woocom. paymone.. Stripema.. woocom. RoosterM,
#35040 #35538 #35559 ¥364BT7 #36488 #38729 #38897 #3908 840459 442555 #a4647
moneycir.. MoneyG. Money G. Richie Ric.. Richie Ric anymoney StripeMo., Takemy Money Money czech ma.
2a4648 #47713 847738 #47739 #47740 #4921 #51834 #55840 855951 #3971 2162
bosnr r7e Monoy Encavin Eowevhn Formvhin meney Manme monm Nmmr o Marin Ganta st

You selected "money bag"
con ID: 23003

from this, and a Mod 60 on the minutes

Listing 2 shows on the display. It is up to

Figure 6: lcons are available for download from the LaMetric
developer page.

§: awTRIX Light 0.90

WiFi Setup Network MQTT Time fleonSy| Auth Files Update LiveView Backup

Icons

Icon ID

23003

Figure 7: Awtrix downloads and displays these icons by reference to
their numeric IDs.

PACE-MAGAZINE.COM

Communication with the Awtrix
firmware’s web server API is handled
by Listing 2 using the apiPayload type
structure from line 11. The json.Marshal()
packer converts the structure into
JSON format in line 20 referencing the
back-quoted instructions in the struc-
ture to do so. For example, the content
of the Go Text attribute, which holds
the character string to be displayed, is
text (i.e., lowercase) in JSON by con-
vention, because JSON fields tradition-
ally start with lowercase letters,
whereas public Go structure fields start
with capital letters.

The postToAPI() function from line 18
expects two parameters from the caller:
the name of the application and an
apiPayload type structure. The apiPay-
load type structure contains the text to
be displayed (in Text), the Rainbou flag
(true value for a colorful display), and
the display duration in seconds in Du-
ration. You can optionally add an icon
so that the viewer can visually deter-
mine which app the displayed value is
associated with.

The Post() function from the Go net/
http standard package then sends the
JSON blob to the web server, specify-
ing the application/json MIME type.
The MIME type is mandatory; other-
wise, the server will not route the call
correctly. After checking the HTTP re-
sponse for errors, the function finally
returns.

Like and Subscribe

In another app, I wanted the Ulanzi to
display the number of subscribers to
my YouTube channel and the number
of videos uploaded to date (Figure 4).
Listing 3 illustrates how the control
computer retrieves the desired numeri-
cal values from YouTube. Google re-
quires a valid API key to access the data;
you can obtain this from the Cloud
Console as shown in my Programming
Snapshot column in the March 2024
issue of Linux Magazine [3].

The official YouTube API client Go li-
brary used in the listing makes it easy
to obtain statistics for a channel. On
top of that, it removes the need for de-
velopers to extract the desired values
from the mess of JSON in the server re-
sponse. The channel ID for identifying
the desired channel is hard-coded in
line 10 and the API key in Line 11.

~
m

ERSPACE 71

MAK

0000000000000 0000000000000000c000000d0000c0odo0ROORBNOSORNOSIOONOOIOIROIOOLABIBADS

PROGRAMMING Customizing an LED Display

The code calls NewService() to create a
service object in line 15. It then invokes
the API client’s List() function with the
statistics parameter to extract the chan-
nel’s statistics metadata. The return value is
a list containing exactly one match, which
line 25 drills down on. Line 26 then extracts
the desired values for SubscriberCount and
VideoCount from the data structure.

Pixelated Icons

If you install multiple apps, and the dis-
play constantly toggles between them,
icons are a great way to show users
which app generated the text currently
on display. Having said this, it is not so
easy to create a meaningful graphic on
a mini matrix of 8x8 pixels on the dis-
play to leave room for the actual data.

Figure 8: Symbolic display of the author’s pers

dago.go

01 package main

02

03 import (

o4 "bufio"

05 "golang.org/x/text/language"

06 "golang.org/x/text/message"

07 "og"
08 "os/user"
09 "path"

10 "regexp"
11 "strconv"
12)

13

14 func mon() string {

-

onal wealth.

24}

Interestingly, the Ulanzi TCO01 with
Awtrix works around this by using pre-
defined icons (Figure 5) from the devel-
oper site of the more expensive competi-
tor product LaMetric [4]. You can search
for suitable icons there using keywords
(Figure 6) and write down their IDs.
Later, on the Awtrix admin page, the
small pixel artworks can be referenced
by this numerical value in the Icons tab
(Figure 7). At the touch of a button, Aw-
trix then downloads the respective icon
to the firmware and displays it in the
first field of an app whenever the JSON
data of an app sent to the display refer-
ences the corresponding numerical icon
ID in the icon field.

After calling the API from the com-
piled Go program, the display will later
show a YouTube-style red play button as
an icon, as you can see in Figure 4. It
told me that my personal channel on the
platform now has 290 subscribers and
that I have uploaded no fewer than 85
videos on cooking and car repairs.

Uncle Scrooge’s Monitor

As for my personal wealth clock, I
can’t publish details, so Figure 8 only
shows a symbolic cash balance. In re-
ality, a Go program runs the control

25 defer file.Close()

26

217 scanner

:= bufio.NewScanner(file)

28 var lastLine string

29 for scanner.Scan() {

30 lastLine = scanner.Text()

31}

32 if err := scamner.Err(); err != nil {
33 panic(err)

34}

35

36 re := regexp.MustCompile('\d+')

37 match := re.FindString(lastLine)

15 usr, err := user.Current() 38 n, err := strconv.ParseInt(match, 10, 64)
16 if err != nil { 39 if err != nil {

17 panic(err) 40 panic(err)

18 } 41}

19 42

20 logf := path.Join(usr.HomeDir, "data/monlog.txt") 43 n =n / 1000

21 file, err := os.Open(logf)
22 if err != nil {

23 panic(err)

72 MAKERSPACE

44 p := message.NewPrinter(language.English)

45 return p.Sprintf("%d", n)

MAKERSPACE-MAGAZINE.COM

PO 0000000 NON0R00RORRS0000000CRRSCRNOOIRRISOROISRNOORORNSOROIBORORORRSORRY

Customizing an LED Display PROGRAMMING

5: ulanzi.go

01 package main
02

03 import (

o4 "fmt"
05 "time"
06)
07

08 func main() {

09 // Youtube

10 £, v, err := youtubeStats()
kil if err != nil {
12 panic(err)

13

15 err = postToAPI("youtube", p)

16 if err != nil {
17 panic(err)
18}

19

20 // Countdown

computer every day, evaluating all my
cash deposits and investment values,
adding them up, and attaching them to
the end of a logfile as a numerical
value. This means that the mon() func-
tion in Listing 4 only needs to navigate
to the end of the logfile, extract the
first numerical value, and return it to
the caller to determine my total
wealth.

Because the bytes of a file are stored
sequentially on the hard disk and a line
is implemented under Unix in such a
way that there is a newline character at
the end, reading the last line of a file is
by no means trivial. The simplest
method: Tell the program to read the
bytes of the file line by line up to the
next newline character until it reaches
the end of the file; it then just needs to
remember the content of the last line it
processed.

However, this is very inefficient, espe-
cially with longer files, because reading
out unnecessary data can take a long
time. For greater efficiency, you can use
the Unix fseek() function to tell the op-
erating system to work its way to the
end of the file
without much
delay and search
backwards from
there for the be-
ginning of the last

$ go mod tidy

MAKERSPACE-MAGAZINE.COM

}
14 p := apiPayload{Text: fmt.Sprintf("%d/%d", £, v), Icon:
974, Duration: 4, Rainbow: true}

21 loc, err := time.LoadLocation("America/Los_Angeles")
22 if err != nil {

23 panic(err)

24}

25 timerVal := DHMUntil(time.Date(2024, time.August, 1, O,
o, 0, 0, loc))

26 p = apiPayload{Text: timerVal, Duration: 4, Rainbow: true}

27 err = postToAPI("countdown", p)

28 if err != nil {
29 panic(err)

30 }

31

32 // Dago

33 p = apiPayload{Text: mon(), Icon: 23003, Duration: 4,

Rainbow: true}

34 err = postToAPI("dago", p)

35 if err != nil {
36 panic(err)

37 }

38 }

line. However, because the logfile pro-
cessed by Listing 4 isn’t excessively
long, it uses the first, simpler method.

To make long numbers easier to read,
the US and UK comma-separate groups
of digits (“10,000”); some other coun-
tries, such as Germany, for example,
use dots (“10.000”) instead. The stan-
dard text/message Go library takes care
of this in Listing 4, loading the 1anguage
library in line 5 and initializing it for
the English-language area in line 44.
This means that the mon() function re-
turns the correctly formatted string for
the money store status to the main
program.

Starting Signal

The main program in Listing 5 finally
lumps it all together. It calls the helper
functions of the three defined apps in
sequence and sends the corresponding
JSON data to the display each time. To
compile the Go program, the three stan-
dard commands in Listing 6 process all
five source files discussed so far and
create the ulanzi binary. To keep the
display up to date, a cron job on the

build.sh

$ go mod init ulanzi

$ go build ulanzi.go api.go countdown.go youtube.go dago.go

control computer needs to call the binary
at regular intervals (e.g., hourly). This
requires a working WiFi connection to
the display.

If Awtrix restarts, for example, be-
cause the device was unplugged and
the battery is exhausted, like in the
case of a prolonged power outage or
following a manual restart due to a
configuration change, the Ulanzi for-
gets the manually edited code and
only plays the preconfigured apps
(unless you disabled them in ad-
vance). Things stay this way until the
next API command comes from the
control computer setting the latest
values for all custom apps. Then the
cycle starts all over again for your
viewing pleasure. munm

[1] Ulanzi TC001 on AliExpress:
https://www.aliexpress.us/item/
3256804848125097.html

[2] Awtrix custom firmware for the Ulanzi
TCO001: https:/blueforcer.github.io/
awtrix-light/#/

[3] “Programming Snapshot: Process You-
Tube View Counts in Go” by Mike Schilli,
Linux Magazine, issue 280, March 2024,
pp. 44-49 https://www.linux-magazine.
com/Issues/2024/280/Stay-Tuned

[4] LaMetric icons: https://developer.
lametric.com/icons

MAKERSPACE 73

0000000000000 0000000000000000c000000d0000coodo0tOORBOSRROIOAOMOOIOIROIOOABIBLARDS

PROGRAMMING Node-RED

Getting started with Node-RED

The LEGO

Principle

Node-RED lets you connect ready-made code building
blocks to create event-driven applications with little or

no code writing. By Udo Brandes

magine you come home and the

blinds come down in the living

room, subtle lighting turns on,

Alexa says hello, and the coffee
maker prepares a cup of coffee. You can
arrange all this magic at the push of a
button without staying up all night
writing code thanks to the low-code
Node-RED platform [1].

With Node-RED, a few elements con-
trol the flow. Each element represents a
whole block of instructions that would
require a large number of lines of code
in conventional programming (Figure 1).

Every Node-RED flow follows the same
programming principle. First, you need a
trigger. In the example shown in Figure 1,
the trigger evaluates a ping signal from a
cell phone. You could also use geodata as
the trigger by replacing the ping evalua-
tion with a geofencing element. In either
case, the event triggers the data process-
ing, which includes queries and involves
modeling data or, as an example, setting a

dashboard display. All of this can be ar-
ranged visually, and it takes place - un-
like many other home automation sys-
tems - in a unified user interface.

Open Source from the Start
Long considered an insider tip in the
maker scene, Node-RED has become a
popular and widely-used tool for writ-
ing simple programs and setting up
complex applications, such as smart
home systems, as well as a way to try
something out to save time.

Still relatively young, Node-RED was
developed in late 2013 by Nick O’Leary
and Dave Conway-Jones, both scientists
with the IBM Engineering Technologies
Group, as an open source side project.
The goal was to provide a simple way to
quickly connect devices with web ser-
vices and programming interfaces.

Node-RED is based on the Node.js
programming language, which is why
you find Node in the name. Dave

ping mobile vt

absem—

A
Position shutters
f switch \ Switch coffee machine
T et —_
no

Figure 1: This Node-RED flow controls a sequence of events to welcome you home at the end of the day.

74

MAKERSPACE

MAKERSPACE-MAGAZINE.COM

Lead Image © nenovbrothers, 123RF.com

Listing 1: Starting the Script

bash <(curl -sL https://raw.githubusercontent.com/node-red/

linux-installers/master/deb/update-nodejs-and-nodered)

Conway-Jones suggested the RED bit be-
cause it sounds like Code Red, an alarm
code as well as a family of computer vi-
ruses. Node-RED has gained popularity
in a short period of time and is now a
widely used tool for the Internet of
Things (IoT) and industrial application

prototyping.

The Basic Principle
Node-RED is a platform with a steadily
growing user base and an active devel-
oper community that continuously con-
tributes new nodes. The range of applica-
tions for Node-RED is broad and still
growing, with the ability to use social
media channels (X, formerly known as
Twitter; email) as well as databases (Mar-
iaDB or InfluxDB). In addition to simple
tasks (ad-hoc evaluations, prototyping),
Node-RED can also be used to solve com-
plex problems in an elegant way. How-
ever, not all tasks are equally well suited
for Node-RED. For example, Node-RED
has difficulties with loops, and processing
large tables is often better off left to tradi-
tional programming languages.

Basically, Node-RED provides pre-
defined code blocks for executing tasks.
These code blocks are referred to as
nodes. Nodes can be connected and net-
worked with each other. The data pro-
cessing starts in the input nodes, which
are followed by the processing nodes
and the output nodes. The complete
structure is known as the flow.

Flow-based programming is
based on an idea by J. Paul Mor-
rison. Back in the early 1970s,

cloud. In my ex-
amples in this ar-
ticle, I use a Rasp-
berry Pi, which is
popular due to
its frugal energy requirements. To get
started, open a terminal and update the
system with

sudo apt-get update

On the Raspberry Pi, Node-RED provides a
script for installation and updates, which
you start with the code in Listing 1.

The script installs Node.js, npm, and
Node-RED. It works on all Debian-
based Linux systems, such as Ubuntu.
However, you may find the current
Node-RED v3.0.2 requires a newer
Node.js than found in the latest
Ubuntu LTS v22.04. In this case, you
have several options: You can install a
recent Node.js from the source code,
download the installer script and tell it
to install an older Node-RED when
called, install the Snap version, or
switch to Docker. Regardless, make
sure that all the required packages are
in place with

sudo apt install build-essential git curl
After the install, you can typically
launch Node-RED either at the terminal
with

node-red-start

or as a system process at boot time with

sudo systemctl enable nodered.service

Flow 1

fPeoseseensERNOSOAROONOIOENOOINROIOONRNONOSEONOONONOSONOOSONOOORNONOOOROOOORORNONOOODYS

Node-RED PROGRAMMING

Essential Files

All of the important Node-RED files re-
side in ~/.node-red, a hidden folder in
your home directory. The most impor-
tant files are in the node_modules folder,
which contains the installed nodes, and
the flouws. json file, which contains all
the flows in JSON format. Backing up
flous. json saves all of your flows. The
settings. js file defines the Node-RED
configuration and is where you set up
important things, such as the password
security level and encrypted connection
features (HTTPS). The length of the
debug output (1,000 characters by de-
fault) or the logging level can also be
defined in settings. js.

Node-RED Editor

The Node-RED editor is the core element
for development with Node-RED. Its
strengths lie in visual programming, a
powerful debugger, and a linter (a tool
for checking the code for problems). In
addition, some system administration
functions can be called in the editor. The
Node-RED developers have implemented
many new features in recent years, mak-
ing programming with Node-RED even
more intuitive.

The Node-RED editor runs in a browser.
In a local installation, the Node-RED
server listens on port 1880 by default. In a
browser running on the same host as the
Node-RED server (such as Chromium on
the Raspberry Pi), the URL is http://
localhost:1880/. Be careful: The Node-RED
installation process leaves you with an un-
protected system! Securing access with a
username and password is highly recom-
mended. A secure HTTPS connection is

Morrison considered an applica-
tion to be more than just a sin- -
gle, sequential process with a ‘ inject
start, a multitude of processing
steps, and an end after process-
ing the tasks. Instead, he was
interested in a network of asyn-
chronous processes that com-
municate via streams of struc- © nkin
tured data blocks (information
packets).

v common Ya des v Bal ~

complete [

o=

status.

link call

link out

InStallation comment " X -

You can host Node-RED on any a mj[=[o[+ =
operating system or even in the Figure 2: The Node-RED editor in a browser window.

0000000000000 0000000000000000c0000000000c0odo0tOORBOSOANOSIOAOOOIOIROIOOLRLBIBADS

PROGRAMMING Node-RED

also essential if you want to support access
from outside the local network.

The Node-RED editor’s browser window
(Figure 2) is divided into four sections:
1. The header (at the top) contains the

workspace’s flow design area. Each
node has at least one input or output
port, symbolized by the small gray
squares. Some nodes also have multi-
ple output ports (e.g., one port for nor-

(using the Deploy button in the header),
clicking on the larger gray square to the
left of the Inject node starts the flow. It
sends a message to the Debug node.
The debug output in Figure 5 shows the

Deploy button for activating flows and
a menu icon. From the menu icon,
you can access various system set-
tings, as well as some helpful func-
tions that go beyond plain-vanilla
editing (e.g., importing or exporting
flows).

. The node palette (on the left) contains
the deployable nodes. The nodes are
arranged by topic, with the ability to
expand or collapse individual topics.

. The workspace (in the middle) is
where flow development takes place.
It contains a management bar for the
flows, the flow design area, and a
footer.

. The sidebar (on the right) provides
useful information (e.g., help, debug)
and management options (e.g., con-
figuration nodes, which are nodes for
settings such as an email account’s
user data). The nodes in the sidebar

mal data output and another for error
messages), but a node can have only
one input port. Individual nodes are
connected by wires, which you create
by dragging a connection from port to
port while holding down the left
mouse button.

Above the nodes, symbols provide in-
formation about the processing status. A
blue dot indicates that changes have not
yet been applied, while a red triangle in-

dicates that configurations still need to be
made. Information can also appear below

the node in the node decoration (e.g., a
Switch node’s status). In most cases, you

will need to modify the nodes you use. To

do this, double-click on the node to mod-
ify the node properties (Figure 4).
The Properties

entire message object.

You can clearly see the message for-
mat: a JSON object. JSON in particular
meets modern requirements for object-
oriented programming with regard to
the exchange of data between one or
more systems. Pushbullet, Telegram,
the Hue lighting system, and many
other programs use JSON. It builds on
a structure with a name-value pair
("topic": "first flow") and on an or-
dered list (table) of values ("colors":
["blue", "red", "yellouw"]).

Each message consists of at least one
message ID (_msgid) and the message
body (payload). The message ID re-
mains the same throughout the entire
message processing process, even if

dialog is roughly Edit inject node
the same for all

nodes; the differ-

Delete

Cancel

are divided into categories and canbe ence is in the spe- % Properties B B H
opened by pressing buttons. cific properties, N
which can be ex-
Message Strategy tensive in some = B N P—
. . s . = . payloa =+ & Hellowor x
Following in the tradition of using a Hello cases. In my ex-
World program to explain data structures, ample, I want the = ["msg, topic =72 frst tlow =

language elements, and relationships in a
given program language, my first Node-
RED example uses a Hello World flow
consisting of an Inject node that executes

Inject node to in-
ject a message +add
where msg.payload
equals “Hello

[Inject once after seconds, then

a program flow and a Debug node that World” and msg. C Repeat none 5
displays the results (Figure 3). topic equals first
Flows can be created by dragging flow. After accept-
O Enabled

nodes from the node palette into the ing the changes
Figure 4: When you double-click on a node, the
node Properties dialog box opens to let you make

Flaw 1 - modifications.

¥ debug i(| &% | ~
Y current flow ~ Gal ~

8/1/2023, 11:17:31 AM node: debug 1

first flow : msg.payload : string[11]

"Hello world"

ik out

comment

Figure 3: A simple Hello World flow in the Node-
RED editor.

Figure 5: The message object’s debug output for
the Hello World example.

76 MAKERSPACE MAKERSPAC

AREEREEEELEEEEEEREEEEEEREEEE RN EEE SRS EEEE R RN REE N E NN EE SN RN YN NNRNENHNN)

Node-RED PROGRAMMING

the message flow branches. The mes-
sage body contains the message text in
JSON format. Deep nesting is not un-
common. The debug output helps to
keep track of the object by collapsing
or expanding the object’s individual
components. Besides this, objects such
as "topic" can be added to the first ob-
ject level of the message - the level
then depends on the circumstances.
You’ll also find the JSON format in the
settings. js configuration file and as a
format for storing flows, as shown in
Listing 2 in the Hello World flow. Figure 6: Using an Arduino microcontroller, a capacitive sensor mea-
sures soil moisture.

ARDUINO
NANO

vi.n

X Rx Pum

o Capacitive Soil *
LU Moisture Sensorvi.0 @

(EEEEXEXEYNEEEEENEERD I

fritzing

Processing Data

My next not-too-complex example dem- Listing 2: Flow Saved in JSON Format
onstrates how easily and powerfully [

Node-RED supports programming. This

"payload": "Hello World",

K K { "payloadType": "str",
example feeds data from a soil moisture .
) "id": "budu49fddosesebd", =100
sensor via USB to Node-RED. Of course,
X "typen: "tab, ngts wo,
you can change the trigger element to
; "label": "Flow 1", nires!:
suit your needs. In other use cases, the 2 25 sl
. "4 ".
trigger could just as easily be incoming disableat:hialse, [
mail, Telegram messages, or TCP re- "info": "", "'labaga2edc504015"
quests. The same applies to the results "env": []]
of data processing (debug output, moni- 3 1
toring on a dashboard, or storing data in { T
a file or database). The principle is al- "ig": "4ef230ee3cdeblad", {
VﬁTySthe same. "type": "inject", "id": "laba6a2edc504015"
A'S the ﬁr.St step, I nge’d to rfleast%re soil "z": "budud49fddoses5ebd", "type": "debug",
Ll Wlth S '5011 bt "name": "Hello World", "z": "buduu9fddosesebd",
sensor (Figure 6). An Arduino Nano con-
"props": ["name": "debug 1",
verts the analog measured value (volt-
. . { "active": true,
age) into a numerical value and outputs
: S "p": "payload" "tosidebar": true,
the value via the serial interface every 10 L i e
5 s " "
seconds. The Arduino code only consists by conselctiRialse,
of a few lines (Listing 3). { "tostatus": false,
Node-RED has a special node for re- "p": "topic", ""complete": "true",
ceiving data from a local serial port: the "vt": "str" "targetType": "full",
Serial-In node from the Network section 1 "statusVal": "",
of the node palette. It replaces the Inject e "statusType": "auto",
node from the Hello World example. "repeat": ", g 300,
The red triangle above the Serial-In wcrontab": "M, nyn: uo,
nodg (Flgt%re 7) 1gd1cates that general wonce": false, nyirest: []
configuration settings need to be made
. . . . "onceDelay": 0.1, }
in addition to configuring the node
"topic": "first flow", 1

properties. Double-click to open the
node properties window. You need to
specify the port for the serial interface. The magnifying glass isting 3: Arduino Code
symbol (located at the bottom of the workspace) makes it »
easier for Node-RED to find available ports and to specify
syntactically correct parameters. You can select the correct

= AO void loop() {
(Aserial . Serial.println (map(analogRead(4), 0, 1023, 0, 100));

delay(5000);

void setup() {

Serial.begin(9600);

Figure 7: A serial port is connected to a Debug node.

7T

Edit serial in node > Add new serial-port config node

split up the data

stream received via
the serial interface.
Other splitting op-

Properties BAiC tions are by fixed
> saial ot - J a lu?ngth or after a
time interval.
4 Settings Baud Rate Data Bits Parity Stop Bits
~ 57600 8 v/ /None v |1 v Dashboard
DTR RTS cTS DSR Because visualiz-
auo v auto v auto v |auto v ing the measured

values in a Debug

Figure 8: Properties such as the baud rate need to

be set for the serial port.

Figure 9: The measured values
received via the serial port are
forwarded for display as a chart
or gauge.

baud rate (9600 in my example) from a
drop-down list (Figure 8).

After the flow has been accepted, the re-
ceived values can be taken from the debug
output. The entire message object has
three name-value pairs: payload, port, and
_msgid. The content of payload includes the
carriage return line feed character (\n) in
addition to the numeric value; it is used to

= Home

Soil Moisture

Course

06:42.00 06:52:00 07:10.00

node is not very
user friendly for
long-term opera-
tion, Node-RED offers graphical user
interface (GUI) packages. A search for
“Dashboard” in the Palette Manager
(Main Menu | Manage Palette | Instal-
lation) yields more than 40 hits. While
no package can currently compete with
Grafana, these GUIs offer sufficient
performance for most use cases. For
instance, the uibuilder package gives
users the ability to create web inter-
faces dynamically. For this example, I
will be using the node-red-dashboard
package, which includes nodes for typ-
ical use cases and is the most wide-
spread, solid, and mature package.

You can use node-red-dashboard to
create a very versatile dashboard. It can
have multiple tabs to organize informa-
tion by topic. A tab holds one or more
vertical columns (groups) that, in turn,
store the widgets.
The default col-
umn width is six
squares, and the
default size of a
square is 48x48
pixels. All this can
be changed, as
can the dashboard
theme. Applying
32 this to the soil

. " moisture sensor
example, the mea-
sured data can be
visualized in the

Current

\

Figure 10: The Chart and Gauge nodes are used on

a single dashboard here.

form of a line dia-
gram or a pointer

0000000000000 006000000000000000000000000c00d0000000d00bsOROOIOIROIOLBENBIAEBLRLDY

PROGRAMMING Node-RED

gauge like a speedometer. Nodes for this
then replace the Debug node (Figure 9).
The red triangles again indicate that
some configuration work is required (as-
signing the widget to a tab or group that
may still need to be created), and you
need to define the node properties again.
Figure 10 shows how the incoming mea-
sured values are displayed without mak-
ing use of the extensive configuration
options of the Chart or Gauge nodes.

Creating Flows
Node-RED can help you design program-
controlled processes. Usually, program-
ming means writing smaller or larger
amounts of code, which often becomes
unmanageable unless you exercise self-
discipline. Depending on the choice of
language, in-depth programming knowl-
edge is required. If you want to test the
code, you have to repeatedly compile and
bind it to create an executable module;
this can require constant switching be-
tween different windows (editor, termi-
nal). Node-RED simplifies this procedure.
As another example of Node-RED’s
capabilities, I will activate an irrigation
system via a switch (a Shelly relay in my
example) if the soil is too dry. This re-
sults in different blocks in the program
flow:
e Receiving the measured values
e Querying for a threshold value that
is used to decide whether the soil is
too dry
e Triggering the irrigation (switching on)
e Switching off the irrigation after a cer-
tain time
Basically, Node-RED solves this problem
with just four nodes. The final Debug
node is for control purposes only and
has nothing to do with the core task
(Figure 11). The measured values are
transferred to the system in the usual
way via the USB interface. A Switch
node checks whether a defined thresh-
old value (an arbitrary value of 460 in
my example) is exceeded. In other
words, it acts like an if query.
In most cases, the query references a
message object that returns a number or

010 ldevyusso — ¢ switch —

trigger 10s

http request

a string as a comparison
value. This does not work
in this example because
msg.payload contains the
CR-LF characters in addi-

Figure 11: Four nodes form the complete irrigation control (the final Debug node

is for control purposes).

78 MAKERSPACE

tion to the measured value.
This is an essential

MAKERSPACE-MAGAZINE.COM

GO0 00ROONDONNR00RORRS00000R0CRRSOGRNNOOIRRIGSORNOSISRNOOORRRNSOROIBONRNOORRROSOROYS

Node-RED PROGRAMMING

requirement if you want to identify the
transmitted data packets individually.
Thus, the object to be compared needs
to be modified using a JSONata expres-
sion (Figure 12), which is a lightweight
query and transformation language for
JSON data that can be used to apply sim-
ple functions directly to values. The
$substring function is used to extract all
the digits from msg.payload starting at
the first position. The number of digits is
the length of msg.payload minus the two
characters for CR and LF. The Trigger
node handles switching on and switch-
ing off the irrigation system.

When a (below threshold) message is
received, the node sends a JSON mes-
sage to turn on the irrigation system. It
then waits 15 seconds (i.e., slightly lon-
ger than the time at which the next mea-
sured value arrives) and then sends the
switch-off message. The highlight is that
the output of the 0ff command is held
back if further messages arrive. Irriga-
tion then continues until the soil has a
sufficient moisture content (Figure 13).

Shelly devices can easily be controlled
using HTTP commands. This task is
handled by an HTTP Request node at
this point. The HTTP Request node’s GET
method references the URL by which the
Shelly device is accessible on the local
network. The action results from the
msg.payload object. The HTTP Request
node converts this object and adds the
result to the URL as a query string pa-
rameter. Figure 14 shows the debug out-
put after a power-on operation. All in all,
the task can be solved quickly and com-
pactly with Node-RED.

Programming Functions
Node-RED has a wide range of versatile
nodes that cover most requirements.
However, situations can arise where the
default nodes are not up to the task. The
Function node is

messages. JavaScript is a powerful pro-
gramming language and can delve
deeply into the system. For this reason,
Node-RED needs to be secured, espe-
cially if you allow access from outside
your local network.

The Function node’s role as an all-
rounder is already clear from its node
properties. There is a separate option
for:

e setting the number of output ports in
the SETUP;

programming the code that will be
executed when the node is deployed
in START;

saving the code for each message
input in FUNCTION; and

storing the code that will be executed
when Node-RED stops, or before the
node is deployed again, in STOP.

Edit switch node

Delete

%+ Properties

¥ Name

== Property

= < v

~ 3,400

+ad
checking all rules

[recreate message sequences

O Enabled

~ J: istring(msg.payload, 0, $length(msg.payload)-2 ==

often the method Edit trigger node
of choice in this :
case. The Function Ll i
node uses Java- £ Properties 4 B =
Script to process _

Send > {} {"urn""on"}

then wait for =

then send

15 | Seconds v
extend delay if new message arrives

[override delay with msg.delay

Figure 13: The properties of the Trigger node define
the irrigation time.

msg : Object

vobject

retry: @

statusCode: 200

» headers: object

responseUrl: "http://192.168.178.86/relay/0?turn=on"
redirectlist: array[0]

12.2.2023, 10:27:03 node: debug 9

_msgid: "bel@e4bd586844al1"

payload: "{"ison":true, "has_timer":false}"

system.

Figure 14: The debug output following the HTTP
Request node shows how to turn on the irrigation

Figure 12: The numerical measured value is

extracted via a substr function.

MAKERSPACE-MAGAZINE.COM

1 ldevtyusso

function 3

—)

Figure 15: A Function node controls the voice output.

MAKERSPACE 79

0000000000000 0000000000000000c0000000000coado0ROORBIOSORNOTIOONOOIOIROIOOANBIBADS

PROGRAMMING Node-RED

To demonstrate this principle, my ex-
ample uses voice output (Figure 15) to
inform the user of the soil moisture
status once a minute. The Function
node prepares the announcement. List-
ing 4 shows the code to be stored in
the Function node for this task.

The variable value stores the content
of msg.payload (i.e., the measured
value). Then msg.payload is rebuilt.
The contents depend on the measured
value (set arbitrarily here). The vari-
able sec contains the seconds part of

Controlling Voice Output

let value = msg.payload
let now = new Date();
let sek = now.getSeconds();
msg.payload =
if (value < '400') {

msg.payload = msg.payload + "
} else {

the current time. Because a new value
only arrives once every 10 seconds, the
action of forwarding the newly created
message is based on a time period and
not on an exact value in seconds. The
Play Audio node, which is also avail-
able for the dashboard, completes the
flow with a voice output. It actually
expects msg.payload to contain a buffer
with a WAV file. If the browser pro-
vides native support for text-to-speech,
msg.payload can (like in my example)
also contain a string that is read aloud.

'The soil moisture has a value of ' + value

Irrigation urgently required";

msg.payload = msg.payload + " Everything is fine";

b
if (sec < 10) {

return msg;

Discover the past
and invest in a new
year of IT solutions
at Linux New Media’s
online store.

Want to subscribe?

Searching for that back
issue you really wish
you'd picked up at the
newsstand?

> shop.linuxnewmedia.com

You can choose from various female
and male voices.

Conclusions

Node-RED is far from being just a click-
and-enjoy tool. Instead, it can provide
elegant solutions to complex and multi-
layered tasks even in the industrial sector.
It impresses with its variety of available
building blocks (nodes), the clear (visual)
representation of the program flow, and
the intuitive user interface. The dash-
board option is also of great value. mum

] Node-RED: https:/nodered.org

Udo Brandes has worked as a programmer
and in-house consultant for various public
service providers. Today he works as an
author with a focus on the Internet of
Things/microcontrollers and has written
a book, Node-RED (only in German), a
comprehensive guide published by
Rheinwerk-Verlag that covers Node-RED’s
many capabilities with a large number of
hands-on examples.

— > shop.linuxnewmedia.com

i |

Threat §

MANAGEMENT

Lock down your ITgRvironment

DIGITAL & PRINT
SUBSCRIPTIONS

JDIN 'ﬂl[LINUI REUOLUTIDNI

GETTING STARTED WITH

HANDBOOK

i YOUR LINUX SKILLS

Power at Your.
ngertips

SPECIAL EDITIONS

Keep this gulde
as @ permanent
reference!

- ..3

Kubescape

ADMIN

Network & Security —

Learn how Liftix apph:atmns
talk to each other 4

Basic stratégles
to secare mail

servers

e
LINUXTODLKIT

Linyx

SUPERCHARGE

seosnesaseend NSO AROOINOIONOOINROIOORNONOSEONOONONINOSONRNOOSONONOORNONOOOROOOORORNONOOODS

Python and Node-RED PROGRAMMING

Mix low-code Node-RED
with Python

Snake Senses

Adding Python to your Node-RED arsenal lets you create
easy Raspberry Pi robotic and loT projects. By Pete Metcalfe

f you want to build some fun Pi
projects but are still working on
your Python skills, then mixing
low-code Node-RED with Python
might be an option for you. As we’ve
discussed in the previous article, Node-
RED [1] is a low-code drag-and-drop in-
terface that is extremely powerful for the

Some excellent dashboard compo-
nents can be used to create lightweight
web interfaces. A great widget to in-
clude in your toolset is the Button State
flow for creating an array of buttons. To
install this component select the Node-
RED Menu | Manage Palette item, click
the Install tab, and search for ui-button

Photo by David Clode on Unsplash

creation of Raspberry Pi robotic and In-
ternet of Things (IoT) projects.

Node-RED’s custom scripting is
JavaScript; however, you can also use
Python, which offers a platform to play
and learn Python basics for high-level
tasks such as scheduling and web
dashboards while taking advantage of
Node-RED’s low-code interface.

In many cases, Raspberry Pi features
are only available in Python, so even
die-hard Node-RED users could benefit
from knowing how to integrate Python
into their projects. In this article, I look

at two examples that mix Python and worked on my el
Node-RED. The first creates a web dash- test projects, as Add a widget for Python scripting
board to drive a Raspberry Pi rover; the well. The ability e Nodes install
entire project only requires two Node- to use Python in- 2| sot[TE oz [recomt | [2
RED widgets. The second project creates stead of Javas- g p— "
an IoT page that shows temperature and cript in Node-RED Keyboard bt
humidity data from a BME280 sensor. is an extremely Define a functon with Python instead of

useful feature; R oge i

Getting Started

Depending on your Raspberry Pi image,
Node-RED may already be installed. If
not, see the Node-RED documentation [2]
or the previous article for custom in-
stallation directions.

MAKERSPACE-MAGAZINE.COM

(Figure 1).

The next impor-
tant step is to add
a Python-enabled
widget. Among
the various
choices, I chose
the python-func-
tion-ps compo-
nent (Figure 2)
because it was re-
cently updated;
however, the
other choices

however, it’s not
bulletproof, so
some care may be
needed when
you’re using ad-
vanced Python

User Settings

View

Palette

Keyboard

Add a widget with an array of buttons

Close

Nodes Install
X |sot:|IF|a ece c

Q ui-button x

©@ node-red-contrib-ui-button_state &
ode-RED t W 1

jroup of button:

® 022 M8 2y

Figure 1: Add a button array into Node-RED.

© node-red-contrib-python-function-ps @
Fi Node execute pythc Node-RED

s ® ¢

®@ node-red-contrib-python3-function @
efine a function with Python instead of Javascr

N P

Figure 2: Add Python scripting into Node-RED.

MAKERSPACE 81

libraries. In the next section, I use these
two widgets to control a Raspberry Pi
rover.

Raspberry Pi Rover
Many approaches that use a Raspberry
Pi can lead to a car or rover. For this
project I used:
e A two-motor car chassis (~ $15)
e A portable battery (5V, 3A output,
~ $30)
e A Raspberry Pi with a motor shield
e Four alligator clips and four jumper
wires
e Elastic bands and duct tape
For this project I wanted to ensure that
Python scripting with Node-RED could
be used on a variety of Pi models. I
tested ona 1 B+, 3,and 4. The P11/2
are old and slow but they have the ad-
vantage of lower power. For a Rasp-
berry Pi 3 and 4, the portable battery
needs to output 3A. If you are using a
Pi 1 or 2 you can use a standard 2.1A
phone charger.

Because of the power draw, connecting
motors directly to a Raspberry Pi is not
recommended; luckily, some good motor
or automation shields are available for
around $25. If you’re feeling adventur-
ous, you can build your own motor shield
with a L293D chip (16-pin motor driver
integrated circuit) for about $4. On this
project, I used an older PiFace Digital
module, which has good Python support
but weak Node-RED functionality.

The two-motor car chassis usually
comes without any wiring on the mo-
tors. For a quick setup, I use a combina-
tion of alligator clips and jumper wires
to connect the motor terminals to the Pi
motor shield. A couple of strips of duct
tape are useful for holding the wires in
place. Finally, elastic bands keep the
portable battery and the Raspberry Pi
attached to the chassis.

To test the hardware setup, I found it
best to keep the car chassis raised with
the wheels off the ground. This step al-
lowed me to use a standard power plug
without killing the battery before I was
ready to play. You might have to adjust
the wiring to ensure the motors are both
turning in the required direction.

The first software step is to install your
motor’s Python library. (Note: This step
will vary depending on your motor
shield.) For my hardware, I installed the
PiFace library with:

82 MAKERSPACE

pip install pifaceio

At this point, you should test the
hardware directly with Python. Check
your hardware documentation for
some sample code to turn the motor
on and off.

To test a single motor with Python
within Node-RED, four flows are used:
two inject, one python-function-ps, and
one debug (Figure 3). A debug flow isn’t
required, but it’s useful to verify that the
Python code runs cleanly. The inject
flows create a message payload with ei-
ther a numeric 0 or 1 to stop or start the
motor.

In the python-function-ps flow, the in-
coming Node-RED message (msg) is ac-
cessed as a Python dictionary variable.
The following Python examples read,
set, and clear the Node-RED message:

0000000000000 0000000000000000c0000000000coodo0tOORBOSRRNOSIOAOAOOIOIROIOOLBLBIBADS

Python and Node-RED Programming

get the message payload
themsg = msg['payload']

set the payload
msg['payload'] = "Good Status"
create a new message item
msg['temperature'] = 23.5

clear the entire message

msg.clear()

For the PiFace library, my code needed
todo aurite_pin command to set a spe-
cific pin. A urite command then out-
puts the request states for all the pins.
To set pin O to the incoming payload
message, use:

pin = 0

Pass the msg payload as the 2
pin state

pf.write_pin(pin,msg["payload"])

pf.write()

pin =0

plwritef)

| retummsg

Flow 1 + - # debug i -
common & T - @
Manually test a Motor with Python Script
[Inject —L
O — 1 pontncionps ——— SN
e e .
~ function 1 —
| # Set PiFace Digital Pins from a payload e
pythan L
funcgion - ps import pifaceio

pf = pifaceio PiFace()

Pass the msy payload as the pin state
plwmite_pinpinmsg["payload)

Figure 3: Node-RED test logic to control a motor.

Flow 1
> common
Create a Button Array that controls a Pi Rover
v function
—)
“, mon - 5 ® Rea
[function - ps | 4
3 fimtwork Pass the two motor states # Python code
2 sequence For example: import pifaceio
stop = 00 =
> parser N pf = pifaceio.PiFace()
forward = 11 # Get the Left and Right requested state
> storage left = 01 LEFT = int(msg["payload"][0])
right = 10 RIGHT = int(msg["payload"][1])
v dashboard

Set the left and right pin motor values

the left motor is on pins 0 and right on pin 1
pf.write_pin(0,LEFT)

pf.write_pin(1,RIGHT)

pf.write()

return msg

Figure 4: Node-RED logic to control a Raspberry Pi rover.

Ieoe0nenabOeROERNOSOIAOROOINOIOENOOINROIOORNONSEONOONONIOONRNOSONONOORNONOOORNOOOORONRONOOODYS

Listing 1: Python Control Code
0l #
02 # Set PiFace Digital Pins
03 #
o4 import pifaceio
05 pf = pifaceio.PiFace()
06
07 # Get the Left and Right requested state
08 LEFT = int(msg["payload"][0])
09 RIGHT = int(msg["payload"][1])
10
11 # Set the left and right pin motor values

12 # the left motor is on pins 0 and right is on pin 1

13 pf.write_pin(0,LEFT)
14 pf.write_pin(1,RIGHT)
15 pf.write()

16

17 return msg

Once the basic test-
ing is complete, the
next step is to de-
fine a Node-RED
dashboard with but-
tons to control the
TOVer.

The final Node-
RED logic for this
project only requires
two widgets: The
Button State compo-
nent creates an array
of user buttons, and
python-function-ps
runs the Python code
to control the motors

Set Button label

Set the size to a size other than auto

% Name

= Values:
Label Value
FORWARD a1l

= STOP ~ 3 00
LEFT ~3 01
RIGHT v 310

Add more buttons

Set message payload

(Figure 4).
Edit Button State node
Delete Configure an Array of Buttons Cancel
£ Properties & B H
& Group [Home] Python in Node-Red v |
H size 6x

Set Button color

On Colour Off Colour
[—] |
1 — x
—] x
1 —— x

Figure 5: Configure a Node-RED button array.

Python and Node-RED Programming

The Button State widget is edited with
a double-click. Multiple buttons can be
added with custom labels, payloads, and
colors (Figure 5). A simple two-character
string is used for the buttons’ message
payloads, with the first character being
the LEFT motor state, and the second
being the RIGHT motor state. A FOR-
WARD command sets both the LEFT and
RIGHT motors to 1, with a payload of 11.
A STOP command sets both motors off
with a 00 payload. It’s important to note,
that to turn left, the left motor needs to
be turned off and the right motor needs
to run - and vice versa for turning right.

The python-function-ps flow (List-
ing 1) imports the Python pifaceio library
(line 4) and creates a pf object (line 5).
Next, the button payload passed in is
parsed to make two variables: the LEFT
and RIGHT requested motor state (lines 8
and 9). Lines 13-15 write the motor
states.

Figure 6 shows the Node-RED dash-
board and the rover with a PiFace Digital
module mounted on a Pi 1. Future en-
hancements to this project could take
advantage of motor shields that support
reverse motor directions or variable-
speed motor settings.

Sensor Project

You have the choice of an excellent selec-
tion of Raspberry Pi Python starter proj-
ects, but communicating with sensors and
1/0 are usually good places to start for
people interesting in building IoT projects.

MAKERSPACE-MAGAZINE.COM

to secure
¥ ‘battery and Pi

M ~\>- 1&“ > “' '-‘-, '4 O
- ot . M N

710

A 192.168.0.102:1880/ul

Home

Python in Node-Red

FORWARD

STOP

@ QN Q @

MAKERSPACE 83

0000000000000 0000000000000000c0000000000c0odo0ROORBOSORNOSIOIAOOOIOIROIOOLALBIBADS

Python and Node-RED

In this second project, I look at acquir-
ing temperature and humidity data from a
BME280 sensor (~ $5); however, if you
have a different sensor, you should be
able to adapt this project to your needs.
For the programming, you gather the sen-
sor data in Python, and the real-time
scheduling and the web dashboard are
created in Node-RED. The BME280 sen-
sor is connected to the Pi over inter-inte-
grated circuit (I2C) connections. The se-
rial data (SDA) and serial clock (SCL) are
on Raspberry Pi pins 3 and 5 (Figure 7).

Raspberry Pi
Cpin1-33V

pin 3 -SDA

pin5-SCL

pin 6 - Ground

Figure 7: Pi wiring for a BME280
sensor.

: Test BME280 Sensor

Ol # bme_test.py - Show values from a
BME280 sensor

02 #
(¢}

@

import smbus2

(o]

=

import bme280
05

(o]

o

BME280 sensor address (default
address could be: 0x76)

07 address = 0x77

08

09 # Initialize I2C bus

10 bus = smbus2.SMBus(1)

akak

12 # Load calibration parameters

1l

w

calibration_params = bme280.load_
calibration_params(bus, address)

14
15 # Get sampled data

16 data = bme280.sample(bus, address,
calibration_params)

17

18 print("Temperature: ", data.
temperature)

1

©

print("Pressure: ", data.pressure)

20 print("Humidity: ", data.humidity)

MAKERSPA

84

ming

The first step in this project is to en-
able I2C communications and then in-
stall a Python BME280 library:

Enable I2C, O = enable, 1l=disable
sudo raspi-config nonint do_i2c 0
Install Python BME280 library
pip install RPI.BME280

BME280 sensors are typically on ad-
dresses 0x76 or 0x77. To verify the ad-
dress, use the i2cdetect command-line
tool:

Scan for I2C devices

$ i2cdetect -y 1

To ensure that the sensor, I2C communi-
cations, and Python library are all work-
ing, create a Python test program

(Listing 2). If everything is hooked up
and working correctly, some values
should appear:

Check BME280 setup with a Python 2
test app
#
$ python3 bme_test.py
Temperature: 20.943249713495607
Pressure: 996.5068353240587
Humidity: 52.84257199879564
This Python code can be moved and
tested in the Node-RED environment
with inject and debug flows (Figure 8).
A slight modification to the code in
Figure 8 (lines 17-21) passes the sensor
results to the dictionary msg variable
instead of doing a print statement as

in Listing 2. The debug flow is defined

9 # Initialize I2C bus
16 bus = smbus2.SMBus(1)
11

14 data = bme280.sample(bus, address, params)
15

17 msg.clear()

18 msg['payload'] = data.temperature

19 msg['temperature'] = int(data.temperature)
20 msg['pressure'] = int(data.pressure)

21 msg['humidity'] = int(data.humidity)

22

23 return msg

Flow 1 * > i debug i@ || & -
b ¢ - |@al -
Test Python BME280 Code 15421 node: debug 1
—t e ~object
timestamp —— python-function-ps ——‘. payload: 20.983617358800256
r @ Finishe temperature: 20
1 # Read BME280 Sensor and create a message pressure: 996
2 # humidity: 52
3 import smbus2 msgid: "b1f8d41d5cc5e02b’
4 import bme286
5
6 # BME28O sensor address (could also be ©x76)
7 address = 0x77
8

12 # Load calibration parameters, then get the data
13 params = bme280.load calibration_params(bus, address)

16 # Add sensor data to msg, payload is the temp

Flow 1

> common

v function

o change

Figure 8: Node-RED BME280 test logic.

Easy into Python by Charting BME Sensor Data

Use Python to get Sensor Data

Show results on a dashboard

e
" function - ps |

Sample every minute

v advanced

v dashboard

chart

2-Hour Temperature Plot

=

Show humidity on a bar chart

(Move humidity to payload =~ 7&; dmt r 4 ,\'
=

Figure 9: Chart BME sensor data.

ACE-MAGAZINE.C

TN 0RN000NO0NOORN0R00RORRS0000000CRRSCRNOOIRRSORORRNOOORORSOROIBOROORNRRSORRY

Python and Node-RED Programming

Edit change node
Delete

%+ Properties

Move the humidity to the payload for charting

% Name Move humidity to payload

ERules

Set v | v msg. payload

to the value | » msg. humidity

[Deep copy value

Figure 10: Move the humidity message item to the

payload.

to show the complete message, so the
debug pane shows all the sensor
results.

The next step is to show the results in
a web dashboard, which includes the ad-
dition of two new widgets. The first new
addition is an old-style mercury ther-
mometer widget (ui-widget-thermome-
ter), and the second is a scheduler (big-
timer). Note that it might be useful to in-
clude the Node-RED BME280 component
for a comparison check.

MAKERSPACE-MAGAZINE.COM

Cancel

The final appli-
cation (Figure 9)
uses the same Py-
thon code as in
the earlier test cir-
cuit, but a big-
timer widget
schedules its exe-
cution. Although
this widget has
excellent schedul-
ing functionality,
to keep things
simple, you can
just use the wid-
get’s middle out-
put to send a

Done

DIEIE

pulse every minute.

The thermometer flow shows the tem-
perature value, which is the payload
message from the Python code. A chart
widget reads the same temperature value
and presents the results in a two-hour
line plot. A change flow moves the hu-
midity to the message payload (Fig-
ure 10), which allows a second chart to
show the humidity in a bar chart.

Figure 11 shows the Node-RED
BME280 dashboard with the Raspberry

A 2.168.0.109:1880

Pi and sensor setup. This project could
be enhanced to show the results from
multiple sensors.

Summary

Python scripting in Node-RED offers
new programmers a great way to build
some interesting applications without
getting too bogged down in graphical
interfaces. In a few cases, the python-
function-ps widget crashed. For me,
this occurred with hardware-specific li-
braries like pyusb. A good work-
around is to use the built-in exec com-
ponent, which can run an external Py-
thon program. The exec widget sup-
ports appending message payloads to
the called program string. mmm

Info

[1] Node-RED:
https://nodered.org/

[2] Installing Node-RED:

https://nodered.org/docs/getting-
started/

Author
For more of Pete’s projects, see:
https://funprojects.blog.

gt)

Home

e

BME280 Sensor Data

30°C .
Humidity - 51 %

21°€ , 100

75

oc 50

.......... 25

Office Temp 0

2-Hour Temperature Plot
30
225
15
7.5
0
5 g 11:51:00 12:21:00 13:10:00
nsor and the Node-RED dashboard.
MAKERSPACE 85

PROGRAMMING Low-Code

LR N N N R N NN N

Low-code programming

for the Arduino with
Snap4Arduino

Cold Snap!

86 MAKERSPACE

Snap4Arduino brings the power of low-code programming
to the Arduino hardware environment. 8y pete Metcaite

cratch [1], from MIT, is a
graphical coding environment
that was originally designed for
young programmers. Scratch is
bundled with many Raspberry Pi releases,
and it lets you create digital stories,
games, and animations that communicate
with the Pi’s General Purpose Input/Out-
put (GPIO) pins. There also some op-
tions for using Scratch with Arduino
modules, however most of these imple-
mentations are somewhat limiting.

Snap! [2], which was created at the
University of California, Berkeley, is an
extended implementation of Scratch.
The major difference between Snap!
and Scratch is that Snap! has a rich set
of technical libraries. Some of these
Snap! libraries include database and
SQL interfaces, graphical trends, matrix
manipulation, MQTT (standard messag-
ing protocol for I0oT), and Neural Net
modeling. These additional libraries
and other advanced features mean that
Snap! is not just a teaching tool but is
also ready to serve as a low-code alter-
native for IoT solutions.

The graphical low-code model is
often useful in IoT environments,
where less-experienced programmers
are sometimes forced to adapt to the
ideosyncracies of unfamiliar hardware.
The Snap4Arduino [3] version of Snap!
offers a unique set of libraries that will
upload and configure Arduino modules

without the user needing any Arduino
knowledge or software.

You can run Snap4Arduino either from
a web page or as a standalone Linux,
macOS, or Windows app. In this article,
I will show you three projects that will
help you get started with Snap4Arduino.
The first project allows the user to adjust
the colors on a Neopixel array. The second
project creates a dynamic bar chart that
shows temperature and humidity values
from a DHT11 sensor. The final project
uses the SciSnap! library to show sensor
data in a realtime line plot and then save
the results to a CSV file.

Getting Started

The USB/serial communications between
Snap4Arduino and the microcontroller
module is via the Firmata protocol [4].
Firmata is a protocol designed to support
communication between a microcon-
troller and a computer system. At project
design time, the user can select which
type of Firmata configuration they
would like to install on their Arduino
module.

The Snap4Arduino project offers an
online web interface [5]. To get full
functionality, you’ll need to install a
Chrome/Chromium plugin.

Desktop versions for 32- and 64-bit
GNU/Linux systems are also available.
It’s important to note that there may be
some compatibility issues when

MAKERSPACE-MAGAZINE.COM

Lead Image © Benoit Chartron, 123RF.com

LA R REREREEERENEREERENE R EREEEEE RN AR R RN R R R A N R NN RN AN RN YN NNNRENNNN)

switching between the desktop and the
web versions, so it’s best to stick to one
version.

After you launch the Snap4Arduino
web page or desktop application, you
can reach the reference manual by click-
ing on the top-left A icon (Figure 1). The
Snap4Arduino interface has three main
areas. The left pane contains a palette
area of blocks. These blocks are grouped
and color-coded together based on their
function. The center pane is the scripting
area, and that is where the logic is cre-
ated by dragging and dropping blocks
together in a downward flowing pattern.
The top-right pane is the stage area,
which shows the visual output when a
script is run.

The first step in any project is to load
the required Firmata configuration onto
an Arduino module (Figure 2). The
Snap4Arduino interface supports Ardu-
ino UNO and Mega-compatible modules
for uploads. While you’re loading the
Firmata configuration, you’ll also need
to enable JavaScript extensions and Ex-
tension blocks in the settings drop-
down menu.(Note: other modules such
as: Nano, Leonardo, Micro, Due,
NodeMCU, etc., are supported, but
you’ll need to install Firmata manually
through the Arduino IDE.)

To prove that the communications are
working, you can create a test script to
blink the module’s onboard LED (pin 13).
Figure 3 shows a blink example. The
script uses four Control blocks (in

orange), and three Arduino blocks (in
light blue). Communications are en-
abled by clicking on the Connect Arduino
button and then by selecting a port.
(For most Linux systems the port will
be /dev/ttyAcMe.)

This test script uses a for block to
cycle four times with a set digital pin
to toggle pin 13 on and off. Time delays
are enabled with wait blocks.

The Neopixel Project

Neopixels are individually addressable
RGB color pixel arrays that come in
strips, rings, and rectangular grids.
From the previous test script, the Ar-
duino module has already been loaded
with the Neopixel firmata firmware.
The next step is to import the Neopixel
library into the Snap4Arduino project
(Figure 4).

the LEDs while a red LED circles around
the ring. The script logic (Figure 6) starts
by setting the Arduino connect port and
defining 24 Neopixel LEDs on data pin 6.
Four variables are defined: pin, Red,
Green, and Blue. On the right stage pane,
the color variables are defined with user-
adjustable sliders.

Two for loops are embedded within
a forever loop. The inner for sets all
the LEDs to the values from the color
variable (Red, Green, and Blue) sliders.
The outer for loop moves the red LED
around the circle every 0.5 seconds.
When the script is running, the pin
variable will show the position of the
red circling LED.

On the top right of the Snap4Arduino
screen are three icons to start (green
flag), pause, and stop the script from

For this project,
I used a 24-LED
Neopixel ring
(Figure 5), how-
ever, you could
use any Neopixel
array type. The al-
ligator clips were
used to connect
the 5V, GND, and
data pins (pin 6).
My goal for this
project was to

A Snap4Arduino 8.2.4
e
JA

Miotion
€ Looks

=< C @& snap4ard

 control
Sensing

o)

{ Sound Operators

(Pen Variables

€ Other
[move @2 steps
[tum &, @D degrees
| tum bb degrees

{ Arduino

[point in direction €S

| point towards mouse pointer

[gotox @ v: @

| go to_randomposiion
@0 @y @

x [t

uino.rocks/ru

3% untitled

@ Language...

Zoom biocks...

Fade blocks.

Stage size,

Microphone resolution.
2 JavaScript extensions
[9 Extension blocks
T

O Turbo mode

0 Visible stepping

O Log pen vectors

0 Long form input dialog
O Plain prototype labels
0 Clicking sound

O Flat design

O Thread safe scripts
O Flat line ends

0 Codification support
O Single palette

[HSL pen color model

d Stage

allow the user to
adjust the back-
ground color of

[change x by @&
set x to @

[change y by €D

A Snaplarduno 824

move Q5 wiess

i () @GP sopees
n §, @ seien
poiee in arection G
[R R —
o o x @B v &B

9 o randemposna

e €D secs 0w D v R
change x by @I
o €D
chane= ¥ by @1
oyl @

160 edge, bownce
(pmetion.

W (v pesition

sghtdana (Bhesv - lghtdata (2).cov A Bghtdata (1hcsv

UNO module.

N

Motion

Stage Area

Looks
Sound £ Operal
{ Pen

€ Other (lAr

[connect arduino at |
[disconnect arduino

M (@nalog reading @)
W <digital reading @

interface

1: Snap! help is available in the Snap4Arduino

UNO boards » Firmwares
i v tone
Snap4Arduino connector required | FimataSAS ir
Firmata neopixel
Firmata Standard

Upload Firmata firmware to an Arduino

—
i Control
L Sensmqi

Variables

Sprite
7 draggable
tors

Scripts Costumes Sounds

-
Blink the on-board
LED (pin 13), four
times 7

(Séilservo @ to BT
~

| set digital pin @ 10 __
[et pin @& 1o value €FED

The blink script for an UNO onboard LED.

87

0000000000000 0000000000000000c0000000000ssoboRsORROOEOROMBIBOIAOANDOIOIROIOGOLABLS

PROGRAMMING Low-Code with Snap4Arduino

A SnapdArcuino 2.4 x e v

€ 3 € @ snapsarduino.rocksirur < O 2

wttach @D LED NeoPisel soigm 10 in &D
U@ @@

Sounds

s e
 Sieve. share and et URL h
ew

1| [NeoPuei LED srips bet you acdress RGB
LEDS in large Sirps of gids,
color b You need 1o insta
* NeoPtiFmata into the boad betore
being able 10 use s borary.

Figure 4: Import the Neopixel library into the
Snap4Arduino project.

running. You can also start scripts by needs to be re-up-
clicking on the top of the logic uhen loaded with the
green flag clicked block. (recommended)
FirmataSAS tone

DHT11 Temperature and firmware, : Rl
Humidity Sensor Project Next, Snap4Ar- Figure 5: Setup for the Neopixel project.
A DHT11 Sensor can be connected via duino requires
expansion boards or by manually wiring ~ you to import two libraries (Figure 8), When these three blocks are run, the
the sensor to Arduino pins. Note, the the Bar charts and TdR STEAM v2 librar- stage will show the Readings variable
Firmata firmware sets the DHT11 data ies. The Bar charts library expects the updated with the table information and
pin on pin 4. data to be in a table or a CSV file. Tables a gray, static bar chart will appear. The

For my testing I used a TdR-STEAM- can be created in Snap! by making a final step is to make the bar chart dy-
compatible board (Figure 7). These ex- variable a list of lists. namic with DHT11 sensor data. For this I
pansion boards are relatively inexpen- A Readings variable can be made into a create two additional variables, humidity
sive (~$12) and they offer two color 2x2 table by using three Tist blocks and and tempC, and I position the variables
LEDs, a Neopixel LED, a buzzer, a light a set block (Figure 9). The plot bar around the bar plot stage (Figure 10).
sensor, a DHT11 sensor, and two input chart block (which is found in the Pen The two new variables are updated
buttons. section) is passed the Readings variable, with sensor data by using set blocks to

This project uses a different Firmata along with x-y coordinates, width, and read TdR temperature and TdR humidity
configuration, so the Arduino firmware height values. blocks. The chart color is defined by the

set pen color block. Before a new
[A snapsardinoNeo fing x |+ M x bar chart can be drawn, a clear block
&€ 5 G @ snapsarduino.rocks/run/ tr is required.

N B O % SNeoRing 1 When the final script is run, the
Wotian @ Conirl) bar chart and variabl freshed
I ar chart and variables are refreshe

Looks Sensing | -

Start/Pause/Stop

— Qperators e the script with new sensor data every five sec-
Pen { Variables o
Coter Aidiaa onds. Some good future features
(on) could include adding a time value to
m il the chart or a toggle between degrees
<arduino connected? connect arduino at
[it | attach @ZB) LED NeoPixel stipe o pin @ fed [0] 5 Cand F
o large . .
(et i Lo pet jrol e > In the next project, I'll look at how
Sicer min..
S ervo @ 10 FEETERS shoe ey, to save sensor data to a CSV file.
rax data...
export...

set digital pin @D to __ =
/ ~
— G s . .
© e T —r.— The SciSnap! Library
log reading @& set LED () to R:(Red G:(Green B:(Biue Wekid 2 change values

ey Before getting started on the final
project, it is worthwhile to get
some background on the SciSnap!
library. This package is imported
like the other libraries, and it offers
Figure 6: Script for the Neopixel project. a huge variety of extra blocks that

st LED (1 to R: @D G: @D B @

s R e

[afiach @B LED NeoPixel stripe to pin €3
[l @vr@c@E: @

88 MAKERSF

EEAEENENEERENENENNRENE NN E NN RN NN N

o

x
i«
x

Rotation AO

HY-M302

RESET
®)|3.3v
SU

«©
€
L
@
@|on
& |on
w

5U
GND
GO

uin

A SnaplArduino 8.2.4 X 4

» C

& snapdarduino.rocks

Expont peoject
Expon summary.

- P ()

=

))|
% x

IR Receiver 06

3 untitled

Croate variabies
Bitwrse operators
Seisnapi v7
TumeScope
Seral Ports

B MQTT
] Signadsa (Network remote controd)

are grouped together in nine additional
categories.

Figure 11 shows the power of the SciS-
nap library. This example lets the user
select a CSV file from their local system.
The data is then displayed in a table,
with the maximum value in column 2
shown as a separate variable. The entire
script to do this only
takes four blocks!

When using this li-
brary in a project,
you’ll need to call a
start SciSnap block
before you can use
any of its library
blocks. This example
uses the Data tools
grouping. An import
block is configured to
use the filepicker op-
tion to select a CSV
file and insert the data
into the predefined
SciSnap!Data variable.

To show the maxi-
mum data value, a
sort is embedded
within a select rou
block, and the result is
set in the Max_Value
variable. (Note: Row 1
has the headings, so O
row 2 has the maxi- e
mum value.)

The SciSnap! library
supports a large num-
ber of advanced fea-
tures such as image
manipulation, SQL

{ control
(sensing
(Operators

N

Motion
Looks
Sound
Pen

{ Other

{ Arduino

{ control
(Sensing
{ Operators

Motion
Looks
Sound
Pen { Variables
{ other (IAidiina

et i @ o valie @¥D)

M (Gnalog reading @&
W <digital reading @

Make & block

P

setLED @ to v@

(Wariabies

=

TdR-STEAM-compatible expansion board.

ply QD He for QD) seconds

8: Import bar charts and TdR STEAM libraries

Sca hetwoen ranges
Srapunior Blocks
SnapunkorPis RIoCks
12¢

SASFimata
SABFmatalR
NeoPixel

Blocks for the TORSTEAM shiekd v2.
Use StardardFirmata or
SASFimata_lone femane 10 add

Echwdna Boards
jeMCL buzze features.

NogeMC
Ph

for the DHT11 sensor project.

tools, table and

vector management, and neural networks.
In the final project I’ll use SciSnap! to
show dynamic updates on a line plot.

Real-Time Plots Project
You can use any sensor input for the
final project. I used the TdR light sensor,

3% N untitled
= fsprie |

Scripts ~ Costumes Sounds

set Readings ’lnCIlsl

plot bar chart (Readings bars at x: WD y: @D width: QD height: EID

3% DHTI11 bar v2

(9] e
| Sprite
| 7 draggable
Costumes

Scripts Sounds

| connect arduino at (RS

: Displaying DHT11 Sensor data.

with a flash light to generate some peak
values. To get started, the first step is to
import the SciSnap! and TdR STEAM li-
braries into Snap4Arduino.

Figure 12 shows the full script and re-
sults for a line plot with 60 light sensor
data points. The script logic starts with

Readings

2 A B
1 Humidty 50
2 Temperawre 21

Readings
2 A B |
1 Humigy S

2 Temperature

Humidity

 numigity [

Temperature

tempc [ETED)

89

0000000000000 0000000000000000000000d0000cnobdo0ROORBNIOSOIBNLBIOAOBBOTS

Motion { control
Looks Sensing

(1ightdata.csv), and
a message box alerts

SciSnap!Data

Sound Operators ~ 31 A B the user that the
P @ Variabi Scripts Costumes ~ Sounds 1 Dae Wind Speed . %
= [;::m:s 2 20230801 2 SCrlpt 1S Complete. To
— 3 2023-08-02 9 f th
e 4 2230803 1 sdvesa copy of the
1. SciSnap! globais : ;
2 Math toas data plot, right-click
3. Data tools 7 2023 6 4
{ 4.5QL tools 8 2023-08-07 2 On the Stage and Se_
9 2023-08-08 6 L
10 2023-08-09 n lECt plC'
set Max Value | to 11 2023-08-10 3 . 0
Cempty table ’(JSciSnap!Data, 2 with first item? 2@ el i pIOJECt e
@ x © ubic intiized with | = 2 = flroom o single data value, but
14 2023-08-13 6
(new @ by @D tadle with labels: | 15 2023.08-14 3 iti i
(eopy of B e it is also possible to
rt_costume-(RGE)-d | fre 0816 3
T o oot e use SciSnap! to handle
ite SESITIBIN 1o CsV-iile [T 19 20230818 0 multiple sensor values
20 2023 7 E
P random points with ranges x: @[])

inside of a square

(@D random points near a straight x-range @ |
| gradient @B y-axis-intercept €@ range @

(@D random points near (__ID

\between @ and @ range €D

(transpose table or fist 5

add ow B to

[Y o 2% S Arduino Sensor Plot
Motion € Control (3] —
€ Looks Sensing |
Sound € Operators . 2
Pen € Verinbles Scripts Costumes Sounds
€ Arduino
€ 4.50L tools

{ 6. imagePad for image operations
€ 7. GraphPad for graph operations
{ 8 NNPad for neural networks

write SESTETIRET to CS)
[Data- Savedo CS V-]

a connect arduino and a start SciSnap
block. The add rouw block builds a two-
column table of the sample number and
the sensor readings in the SciSnap!Data
variable.

The data plot is created using the
PlotPad for data plots grouping. The
configure as a PlotPad block defines
the chart size and positioning. The set
PlotPad ranges sets the x-y scaling of
the plot. (Note, the plot grows dynami-
cally as new real-time data is added).
The set PlotPad Tabels block defines

90

{¥Scisnap Datal
Create Data Table

siiow global message il ETTHITISITE

and do an x-y plot
with linear regression.

Summary
Low-code program-
ming techniques
make it easy for inex-
perienced users to get
started with program-
ming, and Snap4Ar-
duino takes care of
the Arduino details,
offering an ideal
entry point for new
users to quickly hook
up and play with Ar-

sprite

Light Value

500

| ok) | duino modules and
edit save a picture 4 =
showan e - _d simple sensors.
pen talls sample I found that, when

right click on scene to save image 1was moving hios

tween different Ardu-
ino modules and
projects, [sometimes
had to restart the
Snap4Arduino appli-
cation or web page.

: Script and real-time plot of sensor data. For users looking for
more complex fea-
the title and x-y labels. The add data- tures, the SciSnap! library offers a
plot of mixed data block creates the wealth of functionality. mmm

line plot of evenly
sampled data. Fi-
nally the add axes For more of Pete’s projects, see: https:/

and scales to
PlotPad shows the
full labels and axes Scratch homepage:
descriptions.

After the for loop
completes, the sam-
pled data is written Firmata documentation: h

to a CSV file Snap4Arduino web interface: /

Snap! homepage:

Snap4Arduino homepage: ht

Looking for your place
In open source?

Set up job alerts and get
started today!

OpenSource
JOB HUB

0000000000000 0000000000000000c0000000000coodootOORBNOSOANOSIOAONOOIOIROIOORABIBLARDS

Arduino development on
the command line

At Your
Command

When programming an Arduino microcontroller board for
the first time, most people use the Arduino IDE, a graphical
development environment. However, if you prefer the command
line, you have a powerful alternative: Arduino CLI. By Koen Vervioesem

he Arduino [1] project was with sensors and actuators. Over time,
initially created in 2005 at the the project expanded beyond its aca-
Interaction Design Institute demic origins and became the go-to
Ivrea in Italy as an educa- platform for hobbyists interested in
tional tool to teach students how to programming microcontroller boards.
create and program interactive devices The Arduino graphical integrated de-
velopment environment (IDE) [2] (Fig-
MeoPial) ArdulnoIDE 2.2 b ure 1) has played a significant role in

File Edit Sketch Tools Help

Arduino’s success. It’s easy to learn,

Sel Board - . .
— without too many bells and whistles,
LIBRARY MANAGER NeoPixel.ino . .
| 1 #include <Adafruit NeoPixel.h> but with all the basics you need. If
- 2 you’re satisfied with the Arduino IDE
ype: All » 3 #define PIN ENABLE 11 B X
Topic: Al v 4 :Ge;we PIN 12 or if you use another IDE for Arduino,
5 #define PIXELS 1 . " .
i} AIPIC_Opita by Ao 6 #define BRIGHTNESS 32 5 such as Visual Studio Code [3] with
Ncul:@ \DE;‘L 8 Adafruit NeoPixel pixels = Adafruit NeoPixel(PIXELS, PIN, NEO_GRB); PlatformlIO [4], feel free to continue
for Arduino Opt: g .
i ey ig vl setupti & using them. However, many developers
Ty 5 || SRR GIN Ak I have a command-line-centric workflow
1| EAERGRES R LR, M), because it allows them to work more ef-
15 e ficiently, while making it possible to
AIPIc_PMC by Arduino 16 pixels.begin(); : .
Ardino IDE PLC runtime library 17 pixels.setBrightness (BRIGHTNESS); check automatically whether an Arduino
for Arduino Portenta Machine 18 pixels.show();) .
Cantrol This s the runtme v} sketch still compiles correctly after a
More info 20
. 21 void loop() { code or dependency update.
JHES 22 for(int p = ©; p < PIXELS; p++) { 5
23 for (int i=1; i >=0 ; i--) { Fortunately, if you prefer a command-
for t =1 >=0; j-- . . L
2 R e line environment for Arduino develop-
Arduino Cloud ’ g . i > X i .
Provider Examples b ;3 Sii:{:-fif’:?’;?l(olc’ (i A SR i 2 R Rl ment, you have an official solution: Ardu- =
i frad e . . oo i S
A e i = L delay (1000) ; ino CLI [5]. Although its APIis still con- 2
providers ¢ & g =
Mars it ;t; \ ¥ sidered unstable until a 1.0 release, it’s al- £
. . Lol
121 v 2 |} ready an integral part of the Arduino IDE. =
3 } e . 3
34 The command-line interface (CLI) is used 2
Arduino Low Power by by the IDE as a back end for tasks such as
) Ln1,Col 1 Noboard selected 0 detecting boards, compiling sketches, up- &
Figure 1: The Arduino IDE has played a significant role in Arduino’s loading firmware to boards, installin, £
o
. . o
success. cores and libraries, and more. K

92 MAKERSPACE MAKERSPACE-MAGAZINE.COM

In this article, I explore how to use
Arduino CLI to develop, compile, and
upload Arduino sketches entirely from
the command line.

Installing Arduino CLI

GitHub has pre-built Linux binaries for
all Arduino CLI releases [6], but the easi-
est way to install the latest version is
with an install script:

$ curl -fsSL 2
https://raw.githubusercontent .com/2
arduino/arduino-cli/master/?

install.sh | BINDIR=~/.local/bin sh

This script installs the arduino-c1i com-
mand into the ~/.Tocal/bin directory.
Change the BINDIR to any directory you
want that’s in your PATH environment
variable. At the time of writing this article,
this script installed Arduino CLI 0.34.2.
One additional task you need to per-
form to access your Arduino hardware
over USB is to add your user to the dialout
group if it is not already a member:

$ sudo usermod -a -G dialout $USER

You can check with the id or groups
command. To activate this change, you’ll
need to log in again.

If you now run arduino-cli without
any parameters, you’ll see a list of sup-
ported subcommands (Figure 2). For

1§ arduino-cli

Arduino Command Line Interface (arduino-

U
cli [command]

debug
help

1ib A o ut libraries.

LE R AR R RN EEEEEEENEEEERREEE RN R R RS R R R RN R N N RN NN NRENNNN)

each subcommand, you can request ad-
ditional help by running either of the fol-
lowing commands:

arduino-cli subcommand --help

arduino-cli help subcommand

If you are already somewhat familiar
with how Arduino works, you’ll be able
to figure out a lot on your own with
these commands, because the approach
is similar to that of the Arduino IDE, but
on the command line.

Configuration

Arduino CLI is configured by com-
mand-line flags, environment vari-
ables, and a configuration file, in that
order of priority. If a configuration op-
tion is not set, Arduino CLI uses a de-
fault value.

Thanks to these default values and the
ability to configure Arduino CLI with
command-line flags and environment
variables, the command doesn’t strictly
require a configuration file to function.
However, it’s easier to store some com-
monly used options in a configuration
file, so to begin, I’ll create one with the
default settings:

$ arduino-cli config init
Config file written to: 2
/home/koan/.arduinols/2

arduino-cli.yaml

koang@tux: -

port with a board
ies that can be upgraded

and librar

ated list of additional

fig file

. Valid levels a2

~--help” for more information about a command

After creating the configuration file, this
command also helpfully shows the file’s
location. If you want to view the current
configuration, use the command:

Default Configuration

board_manager:

additional_urls: []
build_cache:

compilations_before_purge: 10

ttl: 720hOmOs
daemon:

port: "s50051"
directories:

data: /home/koan/.arduinols

downloads: /home/koan/.arduinols/?
staging

user: /home/koan/Arduino
library:

enable_unsafe_install: false
logging:

Filials I

format: text

level: info
metrics:

addr: :9090

enabled: true
output:

no_color: false
sketch:

always_export_binaries: false
updater:

enable_notification: true

debug, info, warn, error, fatal, panic

2: The arduino-c1i command supports several subcommands for Arduino software development.

23

0000000000000 0000000000000000c000000d0000c00sc0RONRIOSIOIRNOIOTONOOIOIROLOLBNDS

PROGRAMMING Arduino CLI

sting 2: Query Board Core ing 4: Blink the Built-In LED creating a New
Board Name FQBN 01 void setup() { Sketch
Arduino NANO 33 IoT arduino:samd:nano_33_iot 02 pinMode (LED_BUILTIN, OUTPUT); Now ﬂlatSTNIr{\rdlIU]o cores
. . are set up, it’s time to do
Arduino Nano arduino:avr:nano 03 } . .
something with your micro-
o4

ting 3: Recognized Boards
$ arduino-cli board listall nano

Board Name FQBN

Arduino NANO 33 IoT arduino:samd:nano_33_iot

Arduino Nano arduino:avr:nano

Arduino Nano ESP32 arduino:esp32:nano_nora

$ arduino-cli config dump

Listing 1 shows the output of this com-
mand for the default configuration. If
you need to know the location of the
configuration file at a later time, add
the --verbose option to the previous
command.

Note that the content of the configura-
tion file might differ from the output of
the arduino-cli config dump command.
If the configuration file doesn’t have a
specific configuration option, the com-
mand shows its default value instead.

Managing Arduino Cores
After installing Arduino CLI, the next
thing you should do is update the local
index of available Arduino cores:

$ arduino-cli core update-index

An Arduino core provides support for a
specific board family. You can then
query the list of installed cores:

$ arduino-cli core list

If you’ve already added cores from the
Arduino IDE, you’ll see them listed here
as well because the command-line pro-
gram uses the same installation files lo-
cated in ~/.arduinoi5 and ~/Arduino. The
command displays the installed and the
latest available version of each core, to-
gether with its ID and name. For exam-
ple, the core with ID arduino: avr sup-
ports all Arduino boards with an AVR
microcontroller, including the Arduino
Uno, Mega, Nano, and Duemilanove.

If the command shows that a newer
version of a specific core is available,
you can upgrade with the command:

$ arduino-cli core upgrade arduino:avr

94

05 void loop() {
o6 digitalWrite(LED_BUILTIN,
07 delay(1000);
o8 digitalWrite(LED_BUILTIN,
09 delay(1000);

10 }

You can also upgrade all installed cores
at once:

$ arduino-cli core upgrade

If you want to find out which core you
need for a specific board (e.g., the Ardu-
ino Nano 33 IoT), submit the command:

$ arduino-cli board listall nano

Listing 2 shows that the Arduino Nano
33 IoT requires the arduino: samd: core.
The fully-qualified board name (FQBN)
is the unique identifier for each board,
including its associated core.

If the previous command doesn’t
show the board in which you are inter-
ested (e.g., the Arduino Nano ESP32),
it means the board is not supported by
any of the installed cores. In that case,
you need to search for the board in the
Board Manager, which will show the
core you need:

$ arduino-cli board search nano esp32
Board Name FQBN Platform ID

Arduino Nano ESP32 arduino:esp32

The output reveals that the Nano
ESP32 requires the arduino:esp32 core.
You can then install this core with the
command:

$ arduino-cli core install arduino:esp32
After installation, check again whether

your board is now recognized
(Listing 3).

controller board. Just run the

command
HIGH);

$ arduino-cli sketch new Blink
LOW) ;

to create a new Arduino

sketch named Blink. This

command creates a directory

named B1ink in your current
directory, containing a file named B1ink.
ino, which contains a template for an
Arduino sketch with two empty func-
tions, setup() and loop():

void setup() {
}

void loop() {
}

Instead of having to edit this sketch in
the Arduino IDE, you can now use your
favorite editor (e.g., Vim or Emacs) to
make changes. For example, to create a
simple blinking light with the built-in
LED that most Arduino boards have,
enter the Arduino sketch in Listing 4,
and save the file when you’re done.

Connecting Your Arduino
Board

Now connect your Arduino board to
your PC with a USB cable and check
whether Arduino CLI recognizes it
(Listing 5). You should see the board
name listed. If, however, the board
name shows up as Unknown, it means
Arduino CLI was unable to detect the
FQBN and core automatically. In that
case, you’ll need to search manually for
the FQBN, as explained earlier.

Compiling and Uploading

a Sketch

Copy the string in the FQBN column of
Listing 5 or obtain it from the board
search results. To compile your sketch,
enter:

ting 5: Recognizing an Arduino Board

$ arduino-cli board list
Port Protocol Type

/dev/ttyUSBO serial Serial Port (USB)

Board Name FQBN

Core

Arduino Uno arduino:avr:uno arduino:avr

GonesasoendEROSOOROONOIOENOOINROOONRNOIOEONOONONINOSONRNOOSONOOORNONOOORNOOSOORORNONOOODYS

$ arduino-cli compile 2

-b arduino:avr:uno Blink

Replace arduino:avr:uno with the FQBN
of your board, and B1ink with the direc-
tory in which your sketch is located.

If your code contains a syntax error,
you’ll see an error message. If your
code is syntactically correct, the com-
piled sketch will appear in a temporary
directory, and the command will exit
without errors.

Next, copy the port from the Port col-
umn of Listing 5 (e.g., /dev/ttyusBe).
Use this port when uploading the com-
piled sketch to your board:

$ arduino-cli upload 2
-p /dev/ttyUSBo 2

-b arduino:avr:uno Blink

If everything goes well, you should see a
short output message saying New upload
port: /dev/ttyUSBO (serial). If you want
to verify that the sketch has been up-
loaded successfully, you can add the
--verbose option to the upload com-
mands, which provides you with the
complete output of the uploading tool.
Once the code has been uploaded, the
board’s processor will reset, your code

6: Blink XIAO RP2040 LED

01 #define LED_RED 17

02 #define LED_GREEN 16

03 #define LED_BLUE 25

o4

05 #define LED LED_GREEN

06

07 void setup() {

08 pinMode (LED_RED, OUTPUT);
09 pinMode(LED_GREEN, OUTPUT);
10 pinMode(LED_BLUE, OUTPUT);
11

12 // The LEDs are connected active low.

13 // Set them to HIGH to turn them off.

14 digitalWrite(LED_RED, HIGH);
15 digitalWrite(LED_GREEN, HIGH);
16 digitalWrite(LED_BLUE, HIGH);
17 }

18

19 void loop() {

20 digitalWrite(LED, LOW);

21 delay(1000);

22 digitalWrite(LED, HIGH);

23 delay(1000);

24 }

SPACE-MAGAZINE.COM

will start executing, and the built-in
LED will start blinking. You can now
disconnect your Arduino board from
your PC and power it from another
source. Your sketch is stored in the
board’s built-in flash memory and will
start running every time the Arduino
board boots up.

Adding External Cores
Support for additional boards can be
added by adding a URL to Arduino’s
Board Manager. For example, Earle
Philhower maintains an Arduino core
for RP2040 boards, including the Rasp-
berry Pi Pico Arduino core, Arduino-
Pico [7]. You can add this URL to Ar-
duino CLI’s configuration with the
command:

$ arduino-cli config 2
add board_manager.additional_urls 2
https://github.com/earlephilhower/2
arduino-pico/releases/download/?2

global/package_rp2040_index. json

After adding the URL, you need to up-
date the local index of available Arduino
cores:

$ arduino-cli core update-index

If you now search for available
RP2040 boards,

$ arduino-cli board search rp2040

you’ll see a much longer list than
before, with rp2048:rp2640 as the
necessary core, which you can
install now:

Arduino CLI PROGRAMMING

$ arduino-cli core install rp2040:rp2040

Afterward, you can find the possible
FQBNs for RP2040 boards with:

$ arduino-cli board listall rp2040

For example, to compile the Blink sketch
on the Seeed Studio XIAO RP2040 (Fig-
ure 3), you need to use its FQBN with
the -b flag:

$ arduino-cli compile 2
-b rp2040:rp2040:seeed_xiao_rp2040 2
Blink

After connecting the XIAO RP2040 board
to one of the USB ports on your PC and
running arduino-cli board list, the com-
mand shows /dev/ttyAcMa as its port, so
now upload the compiled sketch:

o

arduino-cli upload 2

-p /dev/ttyACMo 2

-b rp2040:rp2040:seeed_xiao_rp2040 2
Blink

After the board resets, you should see a
red LED blinking next to the USB C con-
nector. However, the green and blue
LEDs next to it are still on. To turn them
off, you can modify the B1ink. ino sketch.
I found the pinout on a Seeed Studio
wiki page [8], and Listing 6 shows the
modified Arduino sketch to blink the
green LED.

In this modified sketch, you first turn
off the three user LEDs of the XIAO
RP2040 (connected active low) with the
HIGH state in the setup() function. Then,
in the Toop() function, you let one of the

LEDs blink - in this

case, the green one.

Managing
Libraries

In reality, an Arduino
sketch is rarely as sim-
ple and self-contained
as the examples
shown here. Most of
the time, you’ll need
to use one or more li-
braries to communi-
cate with sensors or

Figure 3: The Seeed Studio XIAO RP2040 is
a powerful microcontroller board in a tiny

package.

other devices you con-
nect to or for specific
functionality such as
JSON or MQTT.

IAKERSPACE
MAKERSPACE

95

0000000000000 006000000000000b00c000000d0000c0noa0RoRRBOIRRLDIBENLS

For example, the XIAO RP2040 board
also features a WS2812 RGB LED, com-
monly known as a NeoPixel, for which
you will need a support library to
make use of this functionality. To
begin, update the index of Arduino
libraries:

$ arduino-cli 1lib update-index
Next, query the list of installed libraries:
$ arduino-cli 1lib list

If you’ve already installed libraries from
the Arduino IDE, you’ll see them listed
here. The command will display the in-
stalled and the latest available version
for each library. If you notice that a
newer version of a particular library
(e.g., ArduinoJson) is available, you can
update it:

$ arduino-cli 1ib upgrade ArduinoJson

R~

If you are running the latest version, the
Available column doesn’t show a version
number.

The command

$ arduino-cli 1lib upgrade

updates all installed libraries at once.

Adding a NeoPixel Library
Now that you have an updated list of li-
braries, search for a library in the list of
available libraries that allows you to con-
trol WS2812 RGB LEDs. Use neopixel as
the search word:

$ arduino-cli 1lib search neopixel

This command displays a lot of infor-
mation for each library, such as the au-
thor, maintainer, project, supported ar-
chitectures, and available versions
(Figure 4). Choose the library that best
suits your needs. For example, choose

koan@tux: ~

$ arduino-cli lib search neopixel

Name : ”A&afruit DMA neopixel library"
Author: Adafruit

Maintainer: Adafruit <info@adafruit.com>

Sentence: Arduino library for NeoPixel DMA on SAMD21 and SAMD51 microcontrolle

rs
Paragraph:
ers

rduino library for NeoPixel DMA on SAMD21 and SAMD51 microcontroll

Website: https://github.com/adafruit/Adafruit_NeoPixel_ZeroDMA

Category: Display
Architecture: samd
Types: Contributed
Versions: [1.8.8, 1.08.1, 1.0
g, 1.1, L2 K28 1.2,
Dependencies: Adafruit NeoPixel
Name: "Adafruit NeoMatrix"
Author: Adafruit

Maintainer: Adafruit <info@adafruit.com>

Sentence: Adafruit_GFX-compatible library for NeoPixel grids
Paragraph: Adafruit_GFX-compatible library for NeoPixel grids
Website: https://github.com/adafruit/Adafruit_NeoMatrix

Category: Display
Architecture: *
Types: Recommended

Versions: [1:6.8, 7.8.1, 1.1:8, 1.1.1,;

@, 1.3.0, 1.3.2]

silere sl U)o U s Tiots

Dependencies: Adafruit NeoPixel, Adafruit GFX Library

Name: "Adafruit NeoPXL8"
Author: Adafruit

Maintainer: Adafruit <info@adafruit.com>

Sentence: Arduino library for controlling 8 NeoPixel LED strips using DMA on A

TSAMD21, ATSAMDS1, RP2646 and ESP32S3

Paragraph: Arduino library for controlling 8 NeoPixel LED strips using DMA on

ATSAMD21, ATSAMD51, RP2846 and ESP32S3

Website: https://github.com/adafruit/Adafruit_NeoPXL8

Category: Display

Architecture: samd, rp20406, esp32

Types: Contributed

Versions: [1.6.8, 1.9.1, 1.8.2, 1.0
20 123,00 285 a6l

045 T-08.6, 1aln8; 1:2:0. 1521, 1.2,

Dependencies: Adafruit NeoPixel, Adafruit Zero DMA Library, Adafruit ZeroTimer
Library, SdFat - Adafruit Fork, Adafruit SPIFlash, Adafruit TinyUSB Library, Ar
duinoJson, Adafruit InternalFlash, FlashStorage, Adafruit CPFS

Name: "Adafruit NeoPixel"
Author: Adafruit

Maintainer: Adafruit <info@adafruit.com>

Sentence: Arduino library for controlling single-wire-based LED pixels and str

ip

Paragraph: Arduino library for controlling single-wire-based LED pixels and st
rip.
Website: https://github.com/adafruit/Adafruit_NeoPixel
Category: Display

: Search through all available Arduino libraries with arduino-cli.

96

the Adafruit NeoPixel [9] library and
install it (the library name can be
found on one of the lines that starts
with Name:):

$ arduino-cli 1lib 2

install "Adafruit NeoPixel"

Note that many libraries come with ex-
ample sketches. You can find their loca-
tion with the command

$ arduino-cli 1lib examples 2

"Adafruit NeoPixel"

Now that the library is installed, you can
use it in your Arduino sketches.

Controlling the NeoPixel

To begin, create a new Arduino sketch:
$ arduino-cli sketch new NeoPixel

In the NeoPixel/NeoPixel. ino file, create
the code shown in Listing 7 to test the
NeoPixel on the Seeed Studio XIAO
RP2040.

On the first line, you include the li-
brary installed earlier, before defining
the number of pixels on the NeoPixel.
Because the Seeed Studio XIAO RP2040
only has one built-in WS2812 RGB LED,
you set PIXELS to 1. The brightness is set
quite low because the LEDs are blin-
dingly bright. Next, define the GPIO pin
to which the NeoPixel is connected, as
well as an enable pin, which is needed
on the XTAO RP2040 to turn on the
NeoPixel. After defining these macros,
you create a pixels object with the num-
ber of pixels, the pin, and the LED type
as arguments.

In the setup() function, you enable
the NeoPixel and initialize it, setting
its brightness. The 1oop function has a
couple of nested loops to iterate
through all the pixels (so this code also
works if you connect a NeoPixel LED
strip or ring) and RGB (red, green,
blue) components. Basically, each
pixel gets eight colors in a row with a
delay of a second in between, after
which the pixel is off (all RGB compo-
nents are 0 at the end of the loop) and
the next pixel takes its turn. It’s a sim-
ple way to test whether all your pixels
are working.

Finally, compile and upload the
sketch to your board with the same

e A R R R R R A R R R A R R R N R N A R R A R R R A N R R A N R R R A A R R A N R N R A N R N A N NN N

Arduino CLI PROGRAMMING

commands you learned earlier. If ev-
erything goes well, you should now
see the NeoPixel on your board cycling
through different colors.

Arduino CLI in GitHub
Actions

If you have a GitHub repository with
Arduino sketches, you can use the

arduino/compile-sketches GitHub ac-
tion [10] to check whether the sketches
compile correctly. Under the hood, this
GitHub action runs Arduino CLI, in-
stalling the necessary cores and librar-
ies that you specify, which allows you
to check, for every commit, whether
the sketches still compile against the
latest cores and libraries for all the

part of a GitHub workflow with the
arduino/arduino-lint-action [12].

Conclusion

In this article, I’'ve explored the main
features and tasks you can perform with
Arduino CLI. The command provides
many other options to customize its be-
havior. Be sure to check the output of

Listing 7: Test NeoPixel on XIAO RP2040
01 #include <Adafruit_NeoPixel.h>
o2
03 #define PIXELS 1
o4 #define BRIGHINESS 32 // 0-255
05 #define PIN 12
06 #define PIN_ENABLE 11
o7

08 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(PIXELS, PIN,
NEO_GRB) ;

09

10 void setup() {

11 // Enable NeoPixel

12 pinMode(PIN_ENABLE, OUTPUT);
13 digitalWrite(PIN_ENABLE, HIGH);

15 // Initialize NeoPixel
16 pixels.begin();
17 pixels.setBrightness(BRIGHINESS);

18 pixels.show();

21 void loop() {
22 for(int p = 0; p < PIXELS; p++) {

23 for (int i = 1; i >=0 ; i--) {

24 for (int j = 1; J >=0; j--) {
25 for (int k = 1; k >=0; k--) {
26 pixels.setPixelColor(p, i * 255, j * 255, k * 255);
27 pixels.show();

28 delay(1000);

29 }

30 1

31 }

32 }

33 }

boards you spec-
ify. Another use-
ful tool is Ardu-
ino Lint [11],
which checks for
common prob-
lems in Arduino
projects. You can
also run this tool
automatically as

arduino-cli subcommand --help

for more information about available op-
tions. The -v (verbose) option is espe-
cially useful for troubleshooting, be-
cause it provides more detailed informa-
tion. Once you get the hang of using Ar-
duino CLI, you might find it difficult to
go back to the Arduino IDE! nmm

Author

Koen Vervloesem has been writing about
Linux and open source, computer security,
privacy, programming, artificial intelligence,
and the Internet of Things for more than 20
years. You can find more on his website at
koen.vervioesem.eu.

Info

[1] Arduino: https://www.arduino.cc
[2
[3] Visual Studio Code: https://code.visualstudio.com

Arduino IDE: https:/www.arduino.cc/en/software

[4] PlatformlO: https:/platformio.org
[51 Arduino CLI: https://arduino.github.io/arduino-cli/

[6] Arduino CLI releases:
https://github.com/arduino/arduino-cli/releases

[7]1 Arduino-Pico: https://arduino-pico.readthedocs.io

[8] Getting Started with Seeed Studio XIAO RP2040:
https://wiki.seeedstudio.com/XIAO-RP2040/

Adafruit NeoPixel:
https://github.com/adafruit/Adafruit_NeoPixel

[10]arduino/compile-sketches action:
https://github.com/arduino/compile-sketches

[111Arduino Lint: https://arduino.github.io/arduino-lint/

[9

[12] arduino/arduino-lint-action:
https://github.com/arduino/arduino-lint-action

MAKERSPACE-MAGAZINE.COM

MAKERSPACE 97

0000000000000 0000000000000000c000000d0000coodo0tOORBOSORNOSIOAOAOOIOIROIOOLALBIBADS

MAKERSPACE Contact Information

Write for

MakerSpace is looking for fresh, original articles on
Raspberry Pi and other maker hardware platforms. If
you work with Raspberry Pi, Arduino, BeagleBone,
MinnowBoard, Parallella, or another similar
technology, and you have an interesting story about
a recent project or configuration, drop us a line at
edit@makerspace-magazine.com. We're also
seeking articles on software tools for maker
hardware environments — including applications in
the repositories of the leading Raspberry Pi
operating systems, as well as homegrown scripts for
custom configurations. We're especially interested
in electronics projects that use Raspberry Pi's GPIO
to control real-world hardware devices for a practical
(or whimsical) purpose. Write for MakerSpace and

share your story.

Authors

Dave Allerton
Bernhard Bablok
Erik Barwaldt
Udo Brandes
Hans-Georg ERer
Swen Hopfe
Bruce Hopkins
Andrew Malcolm
Pete Metcalfe
Martin Mohr

Dr. Glinter Pomaska
Gerhard Schauer
Mike Schilli

Koen Vervioesem

98 MAKERSPACE

62
26

32, 46
74

3,54, 58
14, 42
23

8

81, 86
29

18

50

68

36, 92

Contact Info

Editor-in-Chief
Hans-Georg ERer
Senior Editor
Joe Casad
Managing Editor
Lori White
Localization & Translation
lan Travis

Copy Editors
Amy Pettle, Aubrey Vaughn
Layout
Dena Friesen, Lori White
Cover Design
Dena Friesen, lllustration based on graphics
by studiostoks,123RF.com
Advertising
Brian Osborn, bosborn@linuxnewmedia.com
Marketing Communications
Gwen Clark, gclark@linuxnewmedia.com
Publisher
Brian Osborn
c Service / Subscription
For USA and Canada:
Email: cs@linuxnewmedia.com
Phone: 1-866-247-2802
(toll-free from the US and Canada)
For all other countries:
Email: subs@linuxnewmedia.com
Linux New Media USA, LLC
4840 Bob Billings Parkway, Ste 104,
Lawrence, KS 66049, USA.
www.linuxnewmedia.com

While every care has been taken in the content of

the magazine, the publishers cannot be held re-
sponsible for the accuracy of the information con-
tained within it or any consequences arising from
the use of it. The use of the DVD provided with the
magazine or any material provided on it is at your
own risk.

Copyright and Trademarks © 2024 Linux New
Media USA, LLC

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the publishers. Itis assumed that all
correspondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are
supplied for publication or license to third parties

on a non-exclusive worldwide basis by Linux New

Media unless otherwise stated in writing.

MakerSpace is published annually as
MakerSpace (ISSN 2831-7165) by: Linux New
Media USA, LLC, 4840 Bob Billings Pkwy. Ste 104,
Lawrence, KS 66049, USA.

All brand or product names are trademarks of their
respective owners. Contact us if we haven't credited
your copyright; we will always correct any oversight.

Printed in Nuremberg, Germany by Kolibri Druck.

Distributed by Seymour Distribution Ltd, United
Kingdom

Represented in Europe and other territories by:
Sparkhaus Media GmbH, Bialasstr. 1a, 85625
Glonn, Germany.

Online: ISSN 2831-7173, Print: ISSN 2831-7165

Image © lineartestpilo, 123RF.com

@lektor e-zine

Youv Aose ol electvonics

S

What can you expect?

Editorial Store Partner mailing

Every Friday, you'll receive the best Don't miss our Elektor Store You want to stay informed about

articles and projects of the week. promotions. Every Tuesday the ongoing activities within the

We cover MCU-based projects, IoT, and Sunday (and occasionally industry? Then this e-mail will give

programming, Al, and more! Thursdays), we'll have a special you the best insights. Non-regular
deal for you. but always Wednesdays.

(>)lektor

design » share > earn

AMD power
@ TUXEDO

TUXEDO TUXEDO TUXEDO
Polaris 17 - Gen5 Sirius 16 - Gen2 Pulse 14 - Gen3
17.3-inch mid-range Linux All-AMD Linux gaming Ultra portable CPU work-
gamer with highly efficient laptop with highly station with AMD Ryzen 7

AMD Ryzen processor, fast efficient Ryzen 7 8845HS 7840HS, high-res 3K display
NVIDIA RTX graphics and up to and fast Radeon RX and 32 GB LPDDR5-6400
96(!') GB DDR5 5600 MHz RAM. 7600M XT graphics. high-efficiency RAM.

@ tuxe.do/masp2024

&7
%) UXEDO 5
Linux Upto5 Immediately Made in German Data German

compatible Years Guarantee ready for use Germany Privacy Tech Support

